Up: No Title Previous: Conclusions 


  1. SUMMERS, M., The Vampire in Europe, Kegan Paul, Trench and Trubner, London, London, 1929.
  2. DU BOULAY, J., The Greek Vampire: A Study of Cyclic Symbolism in Marriage and Death, Man: The Journal of the Royal Anthropological Institute of Great Britain and Ireland, Vol. 17, pp. 219-238, 1982.
  3. HARTL, R.F. and MEHLMANN, A., The Transylvanian problem of renewable resources, Révue Française d'Automatique, Informatique et de Recherche Operationelle, Vol. 16, pp. 379-390, 1982.
  4. HARTL, R.F. and MEHLMANN, A., Convex-concave utility function: optimal blood-consumption for vampires, Applied Mathematical Modeling, Vol. 7, pp. 83-88, 1983.
  5. KING, S., Salem's Lot, New American Library, New York, New York, 1969.
  6. SNOWER, D.: Macroeconomic Policy and the Optimal Destruction of Vampires, Journal of Political Economy, Vol. 90, pp. 647-655, 1982.
  7. STEINDL, A., FEICHTINGER, G., HARTL, R.F., SORGER, G., On the Optimality of Cyclical Employment Policies: a Numerical Investigation, Journal of Economic Dynamics and Control, Vol. 10, pp. 457-466, 1986.
  8. LUHMER, A., STEINDL, A., FEICHTINGER, G., HARTL, R.F., SORGER, G., ADPULS in continuous time, European Journal of Operational Research, Vol. 34, pp. 171-177, 1988.
  9. DOCKNER, E.J. and FEICHTINGER, G., On the optimality of limit cycles in dynamic economic systems, Journal of Economics, Vol. 53, pp. 31-50, 1991.
  10. WIRL, F., Cyclical strategies in two dimensional optimal control problems: necessary conditions and existence, Annals of Operations Research (special issue on Nonlinear Methods in Economic Dynamics and Optimal Control, to appear in 1992).
  11. FEICHTINGER, G., NOVAK, A. and WIRL, F., Limit cycles in intertemporal adjustment models - theory and applications, (submitted to Review of Economic Studies, 1991).
  12. HASSARD, B.D., KAZARINOFF, N.D. and WAN, Y.H., Theory and applications of Hopf bifurcation, Math. Soc. Lecture Notes, London 1981.
  13. ASCHER, U., CHRISTIANSEN, J. and RUSELL, R.D., A collocation solver for mixed order systems of boundary value problems, Mathematics of Computation, Vol. 33, pp. 659-679, 1978.
  14. STEINDL, A., COLSYS, ein Kollokationsverfahren zur Lösung von Randwertproblemen bei Systemen gewöhnlicher Differentialgleichungen, Technische Universität Wien, Master Thesis, 1981.