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Abstract

The article addresses the well-known Capacitated Vehicle Routing Problem (CVRP),
in the special case where the demand of a customer consists of a certain number of
two-dimensional weighted items. The problem calls for the minimization of the cost
of transportation needed for the delivery of the goods demanded by the customers,
and carried out by a fleet of vehicles based at a central depot. In order to accom-
modate all items on the vehicles, a feasibility check of the two-dimensional packing
(2L) must be executed on each vehicle. The overall problem, denoted as 2L-CVRP,
is NP-hard and particularly difficult to solve in practice. We propose a Tabu Search
algorithm, in which the loading component of the problem is solved through heuris-
tics, lower bounds and a truncated branch-and-bound procedure. The effectiveness
of the algorithm is demonstrated through extensive computational experiments.
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1 Introduction

One of the most frequently studied combinatorial optimization problems is the Capacitated

Vehicle Routing Problem (CVRP), which calls for the optimization of the delivery of goods,
demanded by a set of clients, and operated by a fleet of vehicles of limited capacity based
at a central depot. The application of this model to real world problems is limited by the
presence of many additional constraints. In particular, in the CVRP client demands are
expressed by an integer value, representing the total weight of the items to be delivered,
while in real-world instances demands consist of lots of items characterized both by a
weight and a shape.

In transportation it is often necessary to handle rectangular-shaped items that cannot
be stacked one on top of the other because of their fragility or weight. This happens, for
example, when the transported items are large kitchen appliances, such as refrigerators, or
pieces of catering equipment, such as food trolleys. In such cases, the CVRP must contain
additional constraints to reflect the two-dimensional loading feature of the problem.

The problem studied in this paper, which combines the feasible loading or unloading of
the items into vehicles and the minimization of transportation costs, is particularly relevant
for freight distribution companies. From an algorithmic point of view, the combination
of these two areas of combinatorial optimization (vehicle routing and two-dimensional
packing) is challenging. We consider two variants of the problem (see Section 2), one of
which was first addressed by Iori, Salazar González and Vigo [21]. Following the notation
of these authors, the problem will be denoted here as 2L-CVRP (Two-Dimensional Loading

Capacitated Vehicle Routing Problem).
The vehicle routing problem has been deeply investigated since the seminal work of

Dantzig and Ramser [9]. Branch-and-cut (-and-price) algorithms are nowadays the best
exact approaches (see, e.g., Toth and Vigo [28] and Fukasawa, Longo, Lysgaard, Poggi de
Aragão, Reis, Uchoa and Werneck [12]), but are able to systematically solve to optimality
only relatively small instances. The problem of loading two-dimensional items into the
vehicle is closely related to various packing problems. In particular:

• the Two-Dimensional Bin Packing Problem (2BPP): Pack a given set of rectangular
items into the minimum number of identical rectangular bins. Exact approaches for
the 2BPP are generally based on branch-and-bound techniques and are able to solve
instances with up to 100 items (but some instances with 20 items remain unsolved).
Recent exact algorithms and lower bounds have been proposed by Martello and Vigo
[25], Fekete and Schepers [11], Boschetti and Mingozzi [1, 2] and Pisinger and Sigurd
[26].

• the Two-Dimensional Strip Packing Problem (2SP): Pack a given set of rectangular
items into a strip of given width and infinite height so as to minimize the overall
height of the packing. An exact algorithm proposed by Martello, Monaci and Vigo
[23] can solve instances with up to 200 items, although some instances with 30 items
are still unsolved.
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Both the CVRP and the 2BPP are strongly NP-hard and very difficult to solve in
practice. The same holds for the 2L-CVRP. To our knowledge, the only available solution
methodology for the 2L-CVRP is the exact approach developed by Iori, Salazar González
and Vigo [21]: it consists of a branch-and-cut algorithm that handles the routing aspects of
the problem, combined with a nested branch-and-bound procedure to check the feasibility
of the loadings. The algorithm can solve instances involving up to 30 clients and 90 items.
Since these limits are not reasonable for real-life problems, it is natural to consider heuristic
and metaheuristic techniques. In this paper we propose a Tabu Search algorithm for the
2L-CVRP.

Several metaheuristic approaches are available for the CVRP (see Cordeau et al. [5] for a
recent survey): Tabu Search, Genetic Algorithms, Simulated and Deterministic Annealing,
Ant Colonies and Neural Networks. Very good results were obtained through Tabu Search
(Cordeau and Laporte [7]). Metaheuristic techniques have also been widely applied to
packing problems. The 2BPP was solved through Simulated Annealing by Dowsland [10]
and through Tabu Search by Lodi, Martello and Vigo [22]. Tabu Search and Genetic
Algorithms for the 2SP were developed by Iori, Martello and Monaci [20].

The success of Tabu Search both for routing and packing problems influenced our
choice in favor of such technique for the 2L-CVRP. An additional consideration is that
even the problem of finding a feasible solution to the 2L-CVRP (i.e., a partition of the
clients into subsets that satisfy the weight capacity of the vehicles and for which a feasible
two-dimensional loading exists) is already strongly NP-hard and very difficult to solve in
practice. Techniques based on populations of solutions, such as Genetic Algorithms and
Scatter Search, would be forced to deal with a high number of infeasible solutions, and
hence do not seem very promising.

In Section 2 we introduce our notation and give a detailed description of the addressed
problems. In Section 3 we present the proposed Tabu Search approach. The intensification
phase, which constitutes a very important component of the algorithm, is described in
detail in Section 4. Computational results on small-size and large-size instances are given
in Section 5.

2 Problem Description

We are given a complete undirected graph G = (V,E), where V is a set of n + 1 vertices
corresponding to the depot (vertex 0) and to the clients (vertices 1, . . . , n), and E is the
set of edges (i, j), each having an associated cost cij. There are v identical vehicles, each
having a weight capacity D and a rectangular loading surface of width W and height H.
Let A = W × H denote the loading area. The demand of client i (i = 1, . . . , n) consists
of mi items of total weight di: item Ii` (` = 1, . . . ,mi) has width wi` and height hi`. Let
ai =

∑mi

`=1 wi`hi` denote the total area of the lot demanded by client i.
We assume that the items have a fixed orientation, i.e., they must be packed with

the w-edge (resp. the h-edge) parallel to the W -edge (resp. the H-edge) of the loading
surface. This restriction is quite usual in logistics when pallet loading is considered, since
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there can be a fixed orientation for the entering of the forks that prohibits rotations during
the loading and unloading operations. We also assume, as is usual for the VRP, that each
client must be served by a single vehicle. When a vehicle k is assigned a tour that includes
a client set S(k) ⊆ {1, . . . , n}, the two following constraints must be satisfied:

Weight constraint: the total weight
∑

i∈S(k) di must not exceed the vehicle capacity D;

Loading constraint: there must be a feasible (non-overlapping) loading of the items in

I(k) =
⋃

i∈S(k)

⋃

`∈{1,...,mi}

Ii` (1)

into the W × H loading area.

The objective is to find a partition of the clients into at most v subsets and, for each subset
S(k), a route starting and ending at the depot (vertex 0) such that both conditions above
hold, and the total cost of the edges in the routes is a minimum. An example is depicted
in Figure 1.
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Figure 1: Example of the 2L-CVRP.

We will consider two variants of the problem: the Unrestricted 2L-CVRP and the
Sequential 2L-CVRP. In the former variant no additional constraint is imposed, while in
the latter we also impose to each vehicle, say k, the following constraint:
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Sequence constraint: the vehicle loading must be such that when client i ∈ S(k) is visited,
the items of the corresponding lot,

⋃
`∈{1,...,mi} Ii`, can be downloaded through a se-

quence of straight movements (one per item) parallel to the H-edge of the loading
area.

In other words, for any item Ii`, no item demanded by a client visited later on in the tour
must lay on the strip going from the w-edge of Ii` to the rear of the vehicle. The dashed
strip above item Iil in Figure 2 (a) shows the forbidden loading area.
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Figure 2: The loading surface.

(a) forbidden area; (b) sequential loading; (c), (d) unrestricted loadings.

This constraint can arise in practice when the items have great weight, size or fragility,
so that moving them inside the vehicle is extremely difficult or impossible. The sequential
variant is the one studied in [21]. In Figure 1, we show a simple example with 3 vehicles
of weight capacity D = 100, 8 customers and 21 items. The three patterns given for
the vehicles are feasible sequential loadings for the freight delivery. (An example of non-
sequential loading is given in Figure 2.)

We assume in the following that all input data are positive integers. The loading area
of a vehicle is represented in the positive quadrant of a Cartesian coordinate system, with
its bottom left corner in (0, 0) and the W -edge (resp. H-edge) parallel to the x-axis (resp.
y-axis), and the vehicle rear coinciding with segment [(0, H), (W,H)]. The position of an
item Ii` in a loading pattern is given by the coordinates of its bottom left point, (xi`,yi`).
The coordinate system is shown in Figure 2: by assuming that the height of item I51 is
h51 = 40, in Figure 2 (b) the position of item I51 is (0, 0), that of item I52 is (0, 40), and
so on.
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3 A Tabu Search Heuristic

Tabu Search is a very effective and simple technique for the solution of optimization prob-
lems. It was first proposed by Glover [15, 16] and has since then been applied to a large
number of different problems (see, e.g., Glover [17] and Glover and Laguna [18] for surveys).

Tabu Search starts from an initial (usually feasible) solution and iteratively moves to a
new one selected in a certain neighborhood of the current solution. At each iteration, the
move yielding the best solution in the neighborhood is selected, even if this results in a
worse solution. To avoid cycling, solutions possessing some attributes of previously visited
solutions are declared tabu for a number of iterations. In order to obtain good practical
results, this simple scheme is usually enriched with additional features. An intensification

phase is often performed to accentuate the search in a promising area, while diversification

is necessary to escape from a poor or already extensively searched area.
The Tabu Search approach introduced in the next sections can accept moves producing

infeasible tours in the following sense. For the sequential 2L-CVRP, all tours considered
in the search satisfy the sequence constraint. However, both in the sequential and the
unrestricted 2L-CVRP, the tours can be weight-infeasible if the total weight exceeds D, or
load-infeasible if the packing needs a loading surface of height exceeding H. The algorithm
never produces packings requiring a loading surface wider than W or implying overlapping
items. Infeasible moves are assigned a penalty proportional to the level of the violation.

Thus, when performing a move, the algorithm must consider the improvement of the
current solution in terms of total edge cost, and check the feasibility of the candidate tour.
For the routing aspects, we have adopted an approach (described later in Section 3.3)
derived from some successful features of Taburoute, a Tabu Search heuristic developed by
Gendreau, Hertz and Laporte [13] for the solution of vehicle routing problems. For what
concerns feasibility, the weight constraint is immediate to check, but the loading constraint
requires the solution of an NP-hard problem. We have thus developed a heuristic algorithm,
described in the next section, executed for each set of clients assigned to a vehicle: it
outputs a two-dimensional pattern of width W and height Hstrip, to be tested against the
available height H.

3.1 A heuristic algorithm to check the loading constraints

Let I(k) (see (1)) be the set of items currently assigned to vehicle k. In this subsection we
describe two heuristics, LH2SL and LH2UL, to check the loading constraints for vehicle k in
the sequential and the unrestricted case, respectively. The algorithms iteratively apply an
inner procedure based on the heuristic rule used in algorithm TPRF (Touching Perimeter)
proposed by Lodi, Martello and Vigo [22] for the two-dimensional bin packing problem, and
applied by Iori, Martello and Monaci [20] to the two-dimensional strip packing problem.
We have developed two inner procedures, TP2SL and TP2UL, for the sequential and the
unrestricted case, respectively. Both procedures assign one item at a time (according
to a given item sorting) to a strip of width W , trying to maximize at each iteration the
percentage of the item perimeter touching the strip or other items already packed (touching
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perimeter). Each item is packed in the normal position (as defined by Christofides and
Whitlock [3]), i.e., with its bottom edge touching either the bottom of the strip or the top
edge of another item, and with its left edge touching either the left edge of the strip or the
right edge of another item.

We next provide the description of procedure TP2SL (sequential case), shown in Figure
3. The first call to TP2SL is performed by LH2SL with an item sorting obtained by scanning
the clients assigned to a route in reverse order of visit and, for each client, by listing the
items in the corresponding lot according to non-increasing width, breaking ties by non-
increasing height. Subsequent calls are performed by perturbing this order, as will be
shown. Procedure TP2SL can terminate in one of three possible ways: with a feasible
packing, with a load-infeasible packing on a surface W × Hstrip with Hstrip > H (to be
penalized within Tabu Search), or with no packing at all. Since the last outcome cannot
occur at the first call, procedure LH2SL always returns a feasible or load-infeasible packing.

procedure TP2SL(I(k))
1. pack the first item of I(k) in position (0, 0) and set H at its height;
2. for each successive item, say I of size (w, h), of I(k) do

2.1 P := {set of normal packing positions (x, y) : (a), (b), (c) below hold}
(a) x + w ≤ W ;
(b) the rectangle of sides ([(x, y), (x + w, y)], [(x, y), (x, y + h)]) is empty;
(c) for each already packed item I, say of size (w, h) packed at (x, y),

(c.1) if I belongs to the lot of a previous client then
either (y ≥ y) or (x + w ≤ x) or (x ≥ x + w);

(c.2) if I belongs to the lot of a successive client then
either (y ≤ y + h) or (x + w ≤ x) or (x ≥ x + w);

2.2 if P = ∅ then return ∞ else P = {(x, y) ∈ P : y + h ≤ H};
2.3 if P 6= ∅ then

pack I in the position (x, y) ∈ P producing maximum touching perimeter
else pack I in the position (x, y) ∈ P for which y + h is a minimum;

2.4 H := max{H, y + h}
end for;

3. return H.

Figure 3: Inner heuristic for producing sequential loadings.

The procedure works as follows. The first item is packed in position (0, 0). The next
item, say Ii`, is packed, if possible, with its bottom-left corner at a coordinate (x, y) that
maximizes the touching perimeter, provided that (i) the unloading sequence is feasible (see
Figure 2 (a)), (ii) the induced strip height does not exceed the vehicle limit. If no such
coordinate exists, the item is packed in that position, among those satisfying (i) (if any),
for which the induced strip height is smaller. With item sortings other than the initial
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one it is possible that an item is encountered for which no packing satisfying (i) exists, in
which case a dummy infinite height is returned. Figure 2 (b) shows the packing produced
by TP2SL for the second vehicle of Figure 1 with the initial sorting. Note that item I42,
which is packed after item I41, can be placed below it, since this position is feasible.

Let m be the total number of items required by the clients of the considered route.
For each item, the number of candidate normal packing positions (set P ) is O(m). The
feasibility check of Step 2.1 (c) and the touching perimeter computation of step 2.3 require
O(m) time. The overall time complexity of TP2SL is thus O(m3).

Procedure TP2SL is iteratively invoked by algorithm LH2SL on modified item sequences
as shown in Figure 4, where λ is the maximum number of times the inner procedure
is executed. On input, the items are ordered according to the initial sorting previously
described. The output is either a feasible packing if the returned value is Hstrip ≤ H,
or a load-infeasible packing if Hstrip > H. Since Procedure TP2SL finds one of these two
kinds of packing when invoked with the initial sorting, LH2SL will always return a packing.

Procedure LH2SL(I(k),λ)
1. Hstrip := TP2SL(I(k)), it := 1;
2. while Hstrip > H and it ≤ λ do

2.1 randomly select two items and switch their positions;
2.2 ξ := TP2SL(I(k));
2.3 Hstrip := min{Hstrip, ξ};
2.4 it := it + 1;

end while
3. return Hstrip.

Figure 4: Heuristic algorithm for checking the sequential loading constraints.

For the unrestricted case, the corresponding procedure, LH2UL, is identical to LH2SL

except for the call to a procedure TP2UL which is obtained from TP2SL by dropping con-
dition (c) of Step 2.1. (Note that in this case P will never be empty at Step 2.2.) For the
vehicle of Figure 2 (b), Figures 2 (c) and (d) show two packings produced by TP2UL: the
former with the initial sorting, i.e., the one used for the sequential case, the latter with
items sorted by decreasing width, breaking ties by decreasing height. The initial sorting
is generally preferable when one wants to reduce the number of items to be moved in the
unloading phase, while the other sorting can produce a better filling of the loading areas.
The former sorting was adopted for the computational experiments of Section 5.

3.2 Initial solution

We use two heuristic algorithms (each in two versions, for the sequential and the unre-
stricted cases) for determining an initial solution. The first algorithm, IHG2SL or IHG2UL,
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works for general 2L-CVRP instances and is always executed. For the special case of
Euclidean instances, a second heuristic algorithm, IHE2SL or IHE2UL, is also executed.

Algorithm IHG2SL (resp. IHG2UL) was obtained by embedding the loading and se-
quencing constraints (resp. the loading constraints) in the classical Clarke and Wright [4]
savings algorithm. Whenever an attempt is made to merge two routes, we check whether
the weight constraint is satisfied, and, if so, we execute procedure LH2SL (resp. LH2UL) of
Section 3.1 to check the load feasibility. The algorithm is first executed by only accepting
merges for which a feasible packing is returned. If in this way we obtain a solution that
uses v vehicles, the execution terminates. Otherwise, starting from the current solution,
we execute a new round where load-infeasible packings are accepted.

The Euclidean algorithm, IHE2SL (resp. IHE2UL), was obtained by embedding the load-
ing and sequencing constraints (resp. the loading constraints) in the algorithm developed
by Cordeau, Gendreau and Laporte [6] for periodic and multi-depot VRPs. We start by
randomly selecting a radius emanating from the depot, and by sorting the clients by in-
creasing value of the angle between the radius and the segment connecting the client to
the depot. The first client is assigned to the first vehicle. We then attempt to assign each
subsequent client to the current vehicle by checking weight capacity and loading feasib-
lity through LH2SL (resp. LH2UL). For the first v − 1 vehicles, only feasible packings are
accepted, while a load-infeasible packing is only accepted for the last vehicle. The best
feasible solution determined in the initialization phase (if any) is stored as the incumbent
solution.

3.3 Tabu Search

As previously observed, our Tabu Search heuristic has to deal with weight-infeasible or
load-infeasible solutions. We treat infeasibilities as penalties in an objective function to
be minimized. Let s denote a solution, consisting of a set of ṽ routes, with 1 ≤ ṽ ≤ v, in
which each client belongs to exactly one route. Let c(k) be the total cost of the edges in
route k. As in Taburoute, we express the objective function as a sum of three terms:

z′(s) = z(s) + αq(s) + βh(s), (2)

where q(s) and h(s) (see below) represent the entity of the violation, if any, of the weight
and loading constraints, respectively, while α and β are self-adjusting parameters. Using
the notation introduced in Section 2 and denoting by Hk the height of the two-dimensional
loading of vehicle k, we have

z(s) =
ṽ∑

k=1

c(k), (3)

q(s) =
ṽ∑

k=1




∑

i∈S(k)

di − D




+

, (4)
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h(s) =
ṽ∑

k=1

[Hk − H]+ , (5)

where [a]+ = max{0, a}.
A move consists of selecting a client i, currently inserted in a route k, removing it from

the route and inserting it into a new route k′. The cost of the new solution is obtained
through the GENI (Generalized Insertion Procedure) heuristic developed by Gendreau,
Hertz and Laporte [14] for the Travelling Salesman Problem. GENI considers a subset of
the possible 4-opt modifications of the two tours (the one from which the client is deleted
and the one where it is inserted), selecting the best one for each tour. Let Np(i) be the
set of the p vertices closest to i (neighbors of client i). In order to reduce the number
of possible moves, only empty routes and routes containing at least one neighbor of i are
considered for possible insertion of i. A good compromise between computing time and
solution quality was experimentally obtained with p = 10.

At each iteration, all possible moves are evaluated, i.e., for each client we consider its
possible insertion into all routes satisfying the neighbor condition above: for each move, the
resulting cost z′(s) (see (2)–(5)) is obtained by determining z(s) through GENI, directly
computing q(s), and computing h(s) through procedure LH2SL (or LH2UL). In certain
situations, a penalty term π (see below, equation (6)) is possibly added to the cost in order
to diversify the search. The move producing the solution with minimum overall cost is
selected. After a move has been performed by removing client i from route k, reinserting i
in k is declared tabu for the next ϑ iterations. An aspiration criterion is based on an n× v
array M that stores in Mij the value of the best feasible solution so far obtained, if any,
with client i assigned to route j (Mij = ∞ if no such solution has been identified). A tabu
move that reinserts client i in route k can be accepted if it improves the current Mij value.
The value of ϑ was experimentally determined as ϑ = log(nv).

Three main parameters govern the search process: α controls weight constraint viola-
tions (see (2)), while β and λ control packing constraint violations (see (2) and Section
3.1). In the initialization phase α and β are set to 1, and λ to 2. In the iterative phase
the three parameters are recursively updated following the characteristics of the solutions
produced by the moves. If the current solution is (resp. is not) weight-infeasible we set
α = α(1 + δ) (resp. α = α/(1 + δ)). In addition, if the current solution is (resp. is not)
load-infeasible we set β = β(1 + δ) and λ = min{λ + 1, 4} (resp. β = β/(1 + δ) and
λ = max{λ − 1, 1}. A good value of δ was experimentally determined as δ = 0.01.

We use a simple diversification technique to escape from poor local minima. Let sa

be the current solution, and sb the solution produced by a move that removes customer
i from route k. As in Taburoute, if z ′(sb) ≥ z′(sa), we add to z′(sb) a penalty term π,
proportional to the frequency of the considered move during the previous iterations. Let
ρik denote the number of times customer i was removed from route k, divided by the total
number of iterations. The penalty term is then

π = ρik(z
′(sb) − z′(sa))γ, (6)

with γ set to
√

nv, as suggested by Taillard [27] and Cordeau, Laporte and Mercier [8]. In
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this way, when no downhill move is found, the algorithm is more likely to escape from poor
local search areas. In order to deeply explore promising areas of the solution space, we
extensively use intensification algorithms. Because of their importance they are described
in the next section.

4 Intensification

Two kinds of intensification techniques are adopted, one executed periodically, every ω
moves, and one (computationally heavier) executed whenever a weigth-feasible poten-
tial new incumbent is obtained. Both intensification processes make use of a procedure
(Repack2SL(k) for the sequential case, or Repack2UL(k) for the unrestricted case) that looks
for a feasible packing for the items of each route k of a load-infeasible solution s, i.e., one
for which Hk > H.

Recall that I(k) is the set of items associated with the clients of route k. Procedure
Repack2SL(I(k), λ), shown in Figure 5, starts by computing lower bounds (Martello and
Vigo [25]) for the two-dimensional bin packing problem instance induced by the items
associated with route k and bin size W × H. If more than one bin is needed, no feasible
loading exists and the procedure terminates. Otherwise we execute the heuristic search
LH2SL of Section 3.1. For this computation, it turned out to be convenient to allow a much
higher number of calls, λ = 10, to the inner heuristic TP2SL. If no feasible packing is still
found, we execute the branch-and-bound algorithm of Iori, Salazar González and Vigo [21]
with a limit of 1 000 backtrackings.

Procedure Repack2SL(I(k), λ)
1. L := lower bound for the 2BPP instance defined by I(k) with bin size W × H;
2. if L > 1 then return ∞;
3. ξ := LH2SL(I(k), λ);
4. if ξ ≤ H then return ξ;
5. execute a truncated branch-and-bound search;
6. if a feasible loading is found then return H

else return ∞.

Figure 5: Intensification for packing constraints.

Procedure Repack2UL is identical to Repack2SL except for the call to LH2UL instead
of LH2SL, and for the execution of a truncated branch-and-bound search that does not
consider the sequence constraints.

4.1 Periodic Intensification

Every ω moves, a local search for improving the incumbent solution is performed through
a modified version of the heuristic algorithm of Iori, Salazar González and Vigo [21]. This
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algorithm is embedded within a branch-and-cut approach and operates on a modified cost
matrix c obtained by setting, for each edge (i, j), cij = cij(1 − xij/2)µ, where xij is the
(possibly fractional) value of the 0-1 decision variable associated with the edge and µ is
a randomization factor uniformly distributed in [0,1]. The new solution is then obtained
by iteratively building routes through a parametric version of the savings algorithm. Each
route (client set) S is constructed by first selecting the client i for which the quantity σc(c0i+
ci0) + σddi + σaai is a maximum (σc, σd and σa prefixed parameters), and then iteratively
inserting in S the client j for which the residual weight capacity dres = D−∑

i∈S di−dj and
loading area ares = A − ∑

i∈S ai − aj are non-negative, and σc( insertion cost ) + σddres +
σaares is a minimum.

In our case, a convenient way to define the modified cost matrix turned out to be

cij =

{
rcij (with r uniformly random in [0,2]) if (i, j) belongs to a route,
cij otherwise.

(7)

and only clients for which the residual loading area ares is no less than a threshold value τ
are considered for possible insertion, in order to take into account the difficulty of packing
the corresponding items. Indeed any loading usually implies a space waste, so it is improb-
able that a feasible loading can be found if ares is close to zero. The value τ is randomly
generated in [0, A · R/4], where

R = max{max
i`

{hi`/H}, max
i`

{wi`/W}} (8)

(maximum relative size of an item) measures the “difficulty” of the packing problem as-
sociated with the instance. In other words, we decrease the residual packing area by a
percentage that takes into account the probability that portions of the loading surface
remain unused.

We use a set of five triplets for the values of (σc, σd, σa): T = {(1, 0, 0), ( 1
2
, 1

2
, 0),

(1
2
, 0, 1

2
), (0, 1

2
, 1

2
), (1

3
, 1

3
, 1

3
)}. The savings algorithm is executed for each triplet, and all

solutions that use no more than v routes are improved through 2-opt modifications. In
addition, all solutions of value less than that of the incumbent are stored in a pool Π.
We then consider the solutions in Π in increasing value. For each solution, we try to
obtain a feasible packing for each route through procedure Repack2SL(I(k), λ), stopping as
soon as an overall feasible solution (if any) is obtained. Given c and a triplet σ, let s =
SAVINGS(c, σ) be the solution built by the savings algorithm, and TWO-OPT(c,s) the
improved solution produced by the first improvement (if any) found through the two-opt
local search algorithm (TWO-OPT(c, s) ≡ s if no improvement was found). All solution
values z(s) are obviously evaluated using the original cost matrix c. The overall procedure,
Improve2SL, is shown in Figure 6, where z denotes the value of the incumbent solution.

Procedure Improve2UL is identical to Improve2SL except for the call to Repack2UL(I(k), λ)
instead of Repack2SL(I(k), λ). Basing on the outcome of computational testings, we set ω
to 1 for n ≤ 40 and to 5 for larger values.
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Procedure Improve2SL

1. create the modified cost matrix c and set Π := ∅;
2. for each triplet σ = (σc, σd, σa) ∈ T do

s := SAVINGS(c, σ);
if s includes no more than v routes then

if z(s) < z then Π := Π ∪ {s};
zold := ∞;
while z(s) < zold do

zold := z(s);
s := TWO-OPT(c, s);
if z(s) < z then Π := Π ∪ {s}

end while
end if

end for.
3. sort the solutions s ∈ Π by non-decreasing z(s) value;
4. for each s ∈ Π in order do

for each route k of s do
ξ := Repack2SL(I(k), λ);
if ξ > H then break

end for;
if ξ ≤ H then return s

end for;
return ∅.

Figure 6: Algorithm for improving the incumbent solution.

4.2 Special intensification

Whenever a solution s having a cost z(s) lower than that of the incumbent is produced,
different actions are taken, depending on the feasibility of the weight and of the loading
associated with s:

(i) if s is weight-infeasible, no attempt is made to make it feasible;

(ii) if s is totally feasible, the incumbent is updated, and some more time is spent in
an attempt to further improve s on an enlarged neighborhood. This is achieved by
doubling, for each client i, the size of Np(i), and applying GENI for each resulting
possible move. In our implementation this results in considering all routes that are
empty or contain at least one of the 20 vertices closest to i;

(iii) if s is weight-feasible but load-infeasible, we first iteratively execute procedure Repack
for each route k of s for which Hk > H. If a feasible solution is obtained in this way,
the additional intensification of case (ii) above is further performed.
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5 Computational Results

The Tabu Search heuristic developed in the previous sections was coded in C and tested on a
test set obtained by modifying instances from the literature. All experiments were executed
on a Pentium IV 1700 MHz. The graph and the weights demanded by the customers were
obtained from CVRP instances (test instances for the CVRP are described in [28], and
can be downloaded from http://www.or.deis.unibo.it/research.html). The number
of items and their dimensions were created according to the five classes introduced in [21]
and [19], namely:

Class 1: each customer i, for i = 1, . . . , n is assigned one item with unit width and height.

Classes 2 – 5: a uniform distribution on a certain interval (see Table 1, column 2) is
used to generate the number mi of items for each customer i. Each item is then
randomly assigned, with equal probability, one out of three possible shapes: vertical

(the relative heights are greater than the relative widths), homogeneous (the relative
heights and widths are generated in the same intervals), or horizontal (the relative
heights are smaller than the relative widths). Finally, the dimensions of the items
are uniformly generated in a given interval (see again Table 1, columns 3–8).

The values H = 40 and W = 20 were chosen for the dimensions of the loading area. Class
1 corresponds to pure CVRP instances, for which no loading constraint is imposed. The
other classes proved to be a challenging mix of items of different sizes.

Table 1: Classes 2 –5

Vertical Homogeneous Horizontal

Class mi hi` wi` hi` wi` hi` wi`

2 [1, 2]
[

4H
10

, 9H
10

] [
W
10

, 2W
10

] [
2H
10

, 5H
10

] [
2W
10

, 5W
10

] [
H
10

, 2H
10

] [
4W
10

, 9W
10

]

3 [1, 3]
[

3H
10

, 8H
10

] [
W
10

, 2W
10

] [
2H
10

, 4H
10

] [
2W
10

, 4W
10

] [
H
10

, 2H
10

] [
3W
10

, 8W
10

]

4 [1, 4]
[

2H
10

, 7H
10

] [
W
10

, 2W
10

] [
H
10

, 4H
10

] [
W
10

, 4W
10

] [
H
10

, 2H
10

] [
2W
10

, 7W
10

]

5 [1, 5]
[

H
10

, 6H
10

] [
W
10

, 2W
10

] [
H
10

, 3H
10

] [
W
10

, 3W
10

] [
H
10

, 2H
10

] [
W
10

, 6W
10

]

Some details on the instances generated in this way are reported in Table 2. For each
CVRP instance, we created five 2L-CVRP instances (one per class) by generating the
number of vehicles v through modified versions of the heuristic of Section 3.1. Recall that
heuristic LH2SL returns the best solution obtained by iteratively invoking, on modified item
sequences, procedure TP2SL, which produces a packing of the item set into a strip of width
W and minimum height. In the modified version, procedure TP2SL produces a packing of
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Table 2: Details on the instance generation.

Class 1 Class 2 Class 3 Class 4 Class 5

Instance n M v LB M v LB M v LB M v LB M v LB
1) E016-03m 15 15 3 3 24 3 3 31 3 3 37 4 3 45 4 3
2) E016-05m 15 15 5 5 25 5 5 31 5 5 40 5 5 48 5 5
3) E021-04m 20 20 4 4 29 5 4 46 5 4 44 5 4 49 5 4
4) E021-06m 20 20 6 6 32 6 6 43 6 6 50 6 6 62 6 6
5) E022-04g 21 21 4 4 31 4 4 37 4 4 41 4 4 57 5 4
6) E022-06m 21 21 6 6 33 6 6 40 6 6 57 6 6 56 6 6
7) E023-03g 22 22 3 3 32 5 4 41 5 4 51 5 4 55 6 3
8) E023-05s 22 22 5 5 29 5 5 42 5 5 48 5 5 52 6 5
9) E026-08m 25 25 8 8 40 8 8 61 8 8 63 8 8 91 8 8

10) E030-03g 29 29 3 3 43 6 5 49 6 4 72 7 6 86 7 5
11) E030-04s 29 29 4 4 43 6 5 62 7 6 74 7 6 91 7 5
12) E031-09h 30 30 9 9 50 9 9 56 9 9 82 9 9 101 9 9
13) E033-03n 32 32 3 3 44 7 5 56 7 5 78 7 6 102 8 5
14) E033-04g 32 32 4 4 47 7 5 57 7 5 65 7 5 87 8 4
15) E033-05s 32 32 5 5 48 6 5 59 6 6 84 8 7 114 8 6
16) E036-11h 35 35 11 11 56 11 11 74 11 11 93 11 11 114 11 11
17) E041-14h 40 40 14 14 60 14 14 73 14 14 96 14 14 127 14 14
18) E045-04f 44 44 4 4 66 9 7 87 10 8 112 10 8 122 10 6
19) E051-05e 50 50 5 5 82 11 9 103 11 10 134 12 10 157 12 8
20) E072-04f 71 71 4 4 104 14 12 151 15 13 178 16 13 226 16 13
21) E076-07s 75 75 7 7 114 14 12 164 17 14 168 17 14 202 17 14
22) E076-08s 75 75 8 8 112 15 13 154 16 14 198 17 14 236 17 14
23) E076-10e 75 75 10 10 112 14 13 155 16 14 179 16 14 225 16 14
24) E076-14s 75 75 14 14 124 17 14 152 17 14 195 17 14 215 17 14
25) E101-08e 100 100 8 8 157 21 18 212 21 18 254 22 19 311 22 19
26) E101-10c 100 100 10 10 147 19 16 198 20 17 247 20 18 310 20 18
27) E101-14s 100 100 14 14 152 19 17 211 22 19 245 22 19 320 22 19
28) E121-07c 120 120 7 7 183 23 20 242 25 21 299 25 21 384 25 21
29) E135-07f 134 134 7 7 197 24 21 262 26 22 342 28 24 422 28 24
30) E151-12b 150 150 12 12 225 29 25 298 30 27 366 30 27 433 30 27
31) E200-16b 199 199 16 16 307 38 33 402 40 35 513 42 37 602 42 37
32) E200-17b 199 199 17 17 299 38 33 404 39 34 497 39 34 589 39 34
33) E200-17c 199 199 17 17 301 37 32 407 41 35 499 41 36 577 41 36
34) E241-22k 240 240 22 22 370 46 40 490 49 42 604 50 44 720 50 44
35) E253-27k 252 252 27 27 367 45 39 507 50 43 634 50 45 762 50 45
36) E256-14k 255 255 14 14 387 47 41 511 51 44 606 51 44 786 51 44
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the item set into the minimum number v of finite bins (vehicles) of width W and height
H, such that the weight and loading constraints are satisfied.

The CVRP instances 1–16 were already used in [21] and [19], producing 80 different
2L-CVRP instances according to the five above classes, while the 100 instances obtained
from 17–36 are considered here for the first time. In the lines of Table 2 (one for each
group of five instances), the first column gives the name of the original CVRP instance
and the second one the number of customers (n). The five following groups of three
columns give, for each class, the total number of items (M =

∑n
i=1 mi), the number of

vehicles (v) and a lower bound (LB) on the minimum number of vehicles needed to ensure
feasibility. This lower bound, reported here in order to show that the produced instances
are indeed “reasonable”, was computed as the maximum among two valid lower bounds:
the number of vehicles in the original CVRP instance and the value obtained by solving
the two-dimensional bin packing problem induced by the item sizes and the vehicle loading
area. This second part of the bound was computed through the code by Martello, Pisinger
and Vigo [24], available at http://www.diku.dk/∼pisinger. (This code works for the
three-dimensional bin packing problem and can obviously be used for the two-dimensional
case as well.) The table shows that the v and LB values are very close: out of a total of
180 instances, these values are identical in 73 cases, and differ by at most two units in 57
cases. The complete set of 180 test instances that were obtained may be downloaded from
http://www.or.deis.unibo.it/research.html.

In Tables 3 and 4, the performance of our approach is compared with the branch-and-
cut algorithm by Iori, Salazar González and Vigo [21] on small-size instances involving less
than 45 customers. Since the latter approach does not consider single-customer routes and
always uses the v available vehicles, the Tabu Search algorithm was executed by making
infeasible (through penalties) any solution not satisfying these properties. In addition, as
in [21], the edge costs were computed by rounding down to the next integer the Euclidean
distances between vertex pairs. The branch-and-cut algorithm had a time limit of 24 hours
per instance, as in the experiments presented in [21]. A convenient policy for controlling
the Tabu Search was experimentally determined as follows. The algorithm is halted after
2n2v iterations, or after one hour of CPU time.

For each instance, Tables 3 and 4 give the best solution obtained both by branch-and-
cut (zbc) and Tabu Search (zTS), the elapsed CPU time in seconds when the best solution
was found (sech), and the total CPU time in seconds (sec). Because the branch-and-cut
is not always run to completion, the value of zbc may be higher than that of zTS. In
addition, asterisks indicate proven optimal solutions, and %gap evaluates the quality of
the Tabu Search solution as %gap = 100 (zTS - zbc)/zbc. The solutions found by the Tabu
Search algorithm are very close to optimality, and are provably optimal in 33 out of 58
known optima. For half of the instances with 29 customers or more (Table 4), the Tabu
Search solution is better than that found by the branch-and-cut in a much higher CPU
time (negative %gap values). On the other hand, for about one third of the instances with
25 customers or less (Table 3) the Tabu Search CPU time is higher than that of branch-
and-cut and, in six of these cases, no optimal solution is found. The worst percentage error
is 7.69, the best percentage improvement is 21.23.
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Table 3: Performance of the Tabu Search heuristic with respect to branch-and-cut. Sequential
instances with n ≤ 25, integer edge costs.

Instance Branch-and-cut Tabu Search

no Class zbc sech sec zTS sech sec %gap

1 1 273 * 3.8 3.9 273 0.0 2.4 0.00
2 285 * 51.4 68.8 285 0.2 4.6 0.00
3 280 * 17.1 21.4 280 1.3 7.8 0.00
4 288 * 1.8 2.4 290 0.3 7.5 0.69
5 279 * 53.1 53.1 279 2.3 15.7 0.00

2 1 329 * 0.2 0.5 329 0.1 1.4 0.00
2 342 * 11.1 11.9 342 1.1 2.0 0.00
3 347 * 6.4 8.1 350 0.2 3.2 0.86
4 336 * 22.4 23.4 336 0.1 6.7 0.00
5 329 * 29.2 29.4 329 0.3 6.1 0.00

3 1 351 * 14.9 15.6 351 0.2 8.4 0.00
2 389 * 32.6 65.8 407 8.9 9.8 4.63
3 387 * 6.0 6.1 387 1.0 20.0 0.00
4 374 * 39.3 39.4 374 14.3 21.9 0.00
5 369 * 0.2 0.2 369 1.0 29.9 0.00

4 1 423 * 0.4 0.4 423 0.2 5.7 0.00
2 434 * 5.3 5.5 434 0.3 7.4 0.00
3 432 * 5.2 8.2 438 5.0 12.8 1.39
4 438 * 23.9 26.4 451 0.8 16.9 2.97
5 423 * 23.0 44.7 423 1.2 27.1 0.00

5 1 367 * 0.1 0.1 367 2.9 12.8 0.00
2 380 * 8.0 8.4 396 4.0 19.7 4.21
3 373 * 1.8 1.9 377 0.6 20.5 1.07
4 377 * 50.2 50.3 406 5.9 33.0 7.69
5 389 * 2928.2 2928.3 389 5.7 57.8 0.00

6 1 488 * 5.9 10.7 488 0.1 10.3 0.00
2 491 * 145.8 145.9 498 1.8 14.0 1.43
3 496 * 135.4 150.4 496 11.2 16.9 0.00
4 489 * 14.1 16.6 503 0.1 40.2 2.86
5 488 * 10.8 13.3 488 0.7 34.2 0.00

7 1 558 * 0.0 0.0 558 0.3 22.0 0.00
2 724 * 32.0 32.5 752 0.7 18.9 3.87
3 698 * 3.2 4.4 704 19.9 29.8 0.86
4 714 * 2596.8 2597.3 742 26.5 50.4 3.92
5 742 * 738.9 747.2 743 16.1 75.1 0.13

8 1 657 * 0.0 0.0 657 7.0 31.3 0.00
2 720 * 75.9 91.8 720 3.1 20.1 0.00
3 730 * 70.0 73.0 752 20.5 33.4 3.01
4 701 * 7.4 14.1 722 11.2 50.0 3.00
5 721 * 1128.9 1128.9 736 12.0 90.2 2.08

9 1 609 * 6.2 31.91 609 1.9 11.9 0.00
2 612 * 453.5 460.52 612 2.9 15.4 0.00
3 615 * 164.8 194.31 626 7.9 38.4 1.79
4 626 * 852.1 1593.34 627 5.9 43.5 0.16
5 609 * 47.4 69.17 609 8.5 81.9 0.00

17



Table 4: Performance of the Tabu Search heuristic with respect to branch-and-cut. Sequential
instances with 25 < n ≤ 40, integer edge costs.

Instance Branch-and-cut Tabu Search

no Class zbc sech sec zTS sech sec %gap

10 1 524 * 1226.2 83249.5 544 19.9 97.3 3.82
2 774 48373.3 86401.1 703 3.8 72.2 −9.17
3 638 * 2304.5 3150.0 676 47.9 118.7 5.96
4 738 * 12671.3 12696.3 773 47.3 156.9 4.74
5 706 48220.2 70308.0 724 84.5 308.9 2.55

11 1 500 * 0.1 0.1 500 0.8 107.8 0.00
2 789 99.8 86400.5 734 4.7 72.2 −6.97
3 763 63747.8 86400.3 785 72.2 101.7 2.88
4 881 85181.5 86400.8 877 196.4 209.5 −0.45
5 695 64392.9 86400.1 696 279.2 387.0 0.14

12 1 599 50093.5 86400.3 598 19.4 33.8 −0.17
2 625 75.6 86400.7 628 9.6 42.9 0.48
3 597 36171.0 86400.6 597 12.9 50.7 0.00
4 624 86321.6 86400.2 640 96.0 120.6 2.56
5 602 22352.4 86400.4 597 103.5 188.2 −0.83

13 1 1991 * 13.2 14.5 1991 47.4 218.7 0.00
2 3523 10784.1 86400.3 2775 43.7 123.1 −21.23
3 2570 * 3087.9 32124.5 2696 121.5 170.3 4.90
4 2673 34999.2 86400.4 2743 29.3 277.0 2.62
5 2807 83628.4 86400.1 2737 237.5 691.9 −2.49

14 1 827 25734.8 86400.4 823 21.8 145.0 −0.48
2 1459 80521.1 86400.8 1266 52.3 144.4 −13.23
3 1211 42204.7 86400.1 1204 137.9 207.1 −0.58
4 1166 * 25391.4 25542.6 1187 108.5 324.9 1.80
5 1504 80511.1 86400.1 1309 103.2 895.0 −12.97

15 1 907 * 17.8 17.8 907 51.9 196.4 0.00
2 1203 386.9 86401.4 1135 94.7 133.9 −5.65
3 1405 15880.7 86401.2 1183 37.1 205.9 −15.80
4 1358 55614.5 86400.3 1372 268.2 332.2 1.03
5 1390 59867.8 86400.1 1361 651.4 671.7 −2.09

16 1 682 * 7086.5 7086.7 682 56.1 96.6 0.00
2 682 * 1767.0 3374.8 682 20.5 91.7 0.00
3 682 * 345.1 3853.3 682 15.3 138.1 0.00
4 691 * 33375.9 33391.8 704 21.7 206.1 1.88
5 682 * 339.0 2784.0 682 62.8 276.6 0.00

17 1 859 493.1 86400.3 842 84.4 158.6 −1.98
2 866 283.8 86400.4 851 56.6 132.5 −1.73
3 850 656.0 86400.0 842 38.8 200.6 −0.94
4 853 102.9 86400.4 845 7.4 279.7 −0.94
5 845 263.6 86400.5 842 44.7 402.2 −0.36
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Table 5: Synthesis of Tables 3 and 4: Sequential instances, integer edge costs.

Branch-and-cut Tabu Search

Class zbc sech sec %opt zTS sech sec %gap

1 643.76 4982.2 20566.6 82.35 643.65 18.5 68.3 0.07
2 841.06 8418.1 35827.7 58.82 777.65 18.2 54.4 −2.55
3 769.06 9694.6 27741.0 70.59 769.12 32.4 80.9 0.32
4 783.94 19839.2 29882.1 70.59 799.53 49.4 128.1 2.03
5 798.82 21443.2 35088.7 58.82 783.12 95.0 249.4 −0.81

average 767.33 12875.4 29821.2 68.24 754.61 42.7 116.2 −0.19

In order to provide an easier way to evaluate the results presented in Tables 3 and 4,
these are summarized in Table 5. The columns give the same information, but the entries
provide the average values for each class, plus the overall average values in the last line.
In addition, the asterisks are here replaced by column %opt, giving the average percentage
of proven optimal solutions. The values in the last column, %gap, were computed as the
average of the percentage gaps in Tables 3 and 4, hence it can happen (see, e.g., Class 1)
that the average solution value is lower for Tabu Search but the percentage gap is positive,
due to differences in the absolute solution values. The table shows that the quality of the
solutions found by the two algorithms is practically equal for Classes 1 and 3, better for
branch-and-cut for Class 4, and better for Tabu Search for Classes 2 and 5. On average
the Tabu Search solutions improve those obtained through branch-and-cut by 0.19%. The
CPU times required by the Tabu Search algorithm are very reasonable. On average it takes
116 seconds in total, and 43 seconds to find the best solution, while for the branch-and-cut
algorithm these values increase to 29 821 and 12 875 seconds, respectively.

In Table 6 we present the results for the complete set of instances, both for sequential
and unrestricted loading. The limit given to the Tabu Search heuristic is again the first oc-
currence between 2n2v iterations and one hour of CPU time. The edge costs are computed
as the rational Euclidean distances between any pair of vertices, without rounding them to
integer values. One-customer routes are allowed, and fewer than v vehicles may be used.
The first group of three columns refer to Class 1, i.e., to pure CVRP instances, while the
next two groups give the average values for Classes 2–5, respectively for the unrestricted
and the sequential case. In each group, the first entry gives the average solution value
(z1 and z2−5), the second one the average elapsed CPU time when the final solution was
found (sech) and the third one the average total CPU time (sec). (Detailed results for
each instance can be found in [19]). The last line of the table reports the average values
over all instances.

The Tabu Search algorithm could find a feasible solution for all 360 instances. By
comparing columns z1 and z2−5 (unrestricted) one can observe that the inclusion of the
loading constraint considerably worsens the solution values of the CVRP (on average by

19



Table 6: Performance of the Tabu Search heuristic. Real edge costs.

CVRP Unrestricted Sequential

Inst. z1 sech sec z2−5 sech sec z2−5 sech sec

1 278.73 2.0 2.2 291.60 4.2 9.7 299.09 2.6 9.2
2 334.96 0.0 1.4 341.02 0.1 3.7 345.23 0.4 3.5
3 359.77 3.5 8.4 377.35 1.6 19.6 385.30 3.8 18.9
4 430.88 0.1 5.7 437.45 0.5 14.7 443.42 1.4 17.0
5 375.28 1.4 12.8 380.20 5.0 25.2 384.06 4.1 27.6
6 495.85 0.3 8.7 501.02 7.2 18.8 502.78 5.1 19.5
7 568.56 0.5 22.6 700.34 6.3 48.4 721.90 15.5 53.0
8 568.56 0.5 36.2 694.99 11.2 61.3 722.73 32.8 83.7
9 607.65 0.4 13.5 619.69 3.6 41.2 624.06 10.6 40.0

10 538.79 6.1 81.7 700.39 36.0 192.0 714.90 43.5 179.6
11 505.01 2.5 98.9 739.04 55.7 207.6 773.45 99.0 199.4
12 610.57 28.5 32.5 620.62 49.0 82.7 631.85 58.8 99.5
13 2006.34 29.9 161.6 2598.20 57.5 332.0 2687.03 49.0 312.8
14 837.67 22.2 152.1 1047.72 375.8 565.6 1101.49 146.0 439.5
15 837.67 1.7 182.5 1201.38 156.7 375.9 1240.89 165.4 313.4
16 698.61 2.7 99.0 702.03 20.5 160.1 704.85 28.0 157.2
17 862.62 59.0 162.8 866.37 64.9 218.2 866.50 88.9 226.2
18 723.54 81.9 587.3 1085.84 589.3 1318.0 1116.17 566.5 1167.7
19 524.61 128.8 641.9 772.25 633.7 1524.5 802.48 365.2 1521.5
20 241.97 253.6 1005.2 564.67 954.5 3237.3 581.81 808.9 3370.3
21 688.18 325.0 2978.7 1066.21 460.1 3600.0 1110.19 1702.2 3561.2
22 740.66 2070.7 3600.1 1087.46 1191.2 3544.5 1130.33 1573.8 3461.8
23 860.47 2210.1 3600.0 1104.72 2032.4 3538.6 1186.36 675.8 3600.0
24 1048.91 866.9 3600.0 1187.62 1454.1 3256.1 1248.43 2642.5 3324.6
25 830.26 2371.0 3598.8 1436.09 1205.8 3600.0 1480.63 2336.5 3600.1
26 819.56 3597.6 3600.3 1404.49 1173.9 3600.0 1471.74 1554.6 3600.3
27 1099.95 355.9 3600.1 1450.18 521.3 3600.0 1524.22 1308.2 3600.0
28 1078.27 985.2 3600.0 2738.31 2051.2 3600.1 2858.53 2576.9 3600.1
29 1179.01 3080.0 3600.0 2474.33 1406.5 3600.0 2575.28 1162.5 3600.2
30 1061.55 1834.4 3600.8 1948.72 1185.4 3600.3 2076.20 2021.4 3600.2
31 1464.04 288.8 3600.9 2506.99 2375.8 3600.2 2592.17 2102.2 3600.5
32 1352.61 1780.8 3600.1 2486.43 1664.8 3600.4 2605.10 2305.2 3600.5
33 1361.51 2531.7 3601.1 2504.00 1843.2 3600.2 2610.55 2221.2 3600.6
34 858.94 1941.9 3604.4 1466.06 1359.1 3601.3 1546.06 2184.4 3601.0
35 992.86 766.7 3600.3 1765.30 2061.7 3600.4 1985.44 2223.1 3600.2
36 678.87 1530.9 3603.9 1909.88 2265.8 3600.1 1946.66 2626.3 3600.9

Aver. 792.31 772.9 1757.4 1216.08 750.7 1837.4 1266.61 977.3 1831.9
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53.48%). Column z2−5 (sequential) shows that a relatively smaller further increase (on
average by 4.15%) is produced by the constraint on sequential loading. The total CPU
times are very close for the two versions, partially also due to the fact that for the largest
instances with n > 75 the time limit of one hour was almost systematically reached. The
time needed to find the best solution is lower for the unrestricted version.

In order to gain some insight into the quality of the loadings provided by Tabu Search,
Table 7 reports, for each class, the following average values computed over the correspond-
ing 36 instances, separately for the unrestricted and the sequential case.

v = number of available vehicles;

v = number of routes in the solution;

#clients = average number of clients per route;

#itemsmin, #itemsmax = average minimum and maximum number of items per route;

#itemsav = average number of items per route;

%area = average percentage of used loading surface.

No significant differences are observed between the two cases but, not surprisingly, in the
unrestricted case the loading appears to be slightly easier.

Table 7: Loading information for classes 1 – 5.

Unrestricted

Class v v #clients #itemsmin #itemsav #itemsmax %area

1 8.89 8.78 8.91 – – – –
2 16.47 16.28 4.80 4.72 7.25 9.36 76.39
3 17.50 17.22 4.59 6.39 9.17 11.47 77.12
4 17.86 17.56 4.45 6.75 10.93 14.47 77.74
5 18.00 14.78 5.21 10.00 15.56 20.00 75.51

av 15.74 14.92 5.59 6.97 10.73 13.83 76.69

Sequential

Class v v #clients #itemsmin #itemsav #itemsmax %area

1 8.89 8.78 8.91 – – – –
2 16.47 16.44 4.67 4.69 7.08 9.17 74.63
3 17.50 17.39 4.54 6.28 9.07 11.33 76.26
4 17.86 17.67 4.41 7.31 10.82 14.50 77.02
5 18.00 15.11 5.16 9.78 15.29 20.22 74.00

av 15.74 15.08 5.54 7.01 10.57 13.81 75.47

21



5.1 Robustness

The robustness of the algorithm was tested by running it with different values of the
parameters. These tests were performed on the instances of Tables 3 and 4.

The algorithm is quite sensitive to the number of iterations allowed. As previously
mentioned, the maximum number of iterations was experimentally determined as 2n2v,
halting the execution, in any case, after one hour of CPU time. Other rules were tested,
leading to a worse average ratio of solution values over computing times. In particular,
replacing 2n2v with a fixed limit of value 200 000 improved the average gap from −0.19%
to −0.63%, and the number of negative gaps from 19 to 22, but the average computing
time increased from 116 to 1547 seconds. Trying 100 000 iterations and 30 minutes halved
the CPU time but decreased by one half the average improvement . Attempts with 300 000
iterations did not lead to any significant variation.

The algorithm proved to be particularly robust with respect to the policy adopted for
the penalization factor γ, which was finally set to

√
nv, as in [27] and [8]. Other functions

attempted, such as
√

nM , nv and nM , produced marginal variations. The approach proved
to be also quite robust with respect to the length of the Tabu list, ϑ. The value ϑ = log(nv)
was finally chosen, but other functions of n and v produced similar results. Functions of
the total number of items M proved instead to be a bad choice. As for the size p of the
neighborhood, we tested the values 5, 9, 10, 11 and 20. The best choice proved to be
p = 10. The results were close for p = 9 and p = 11, but definitely worse for p = 5 and
p = 20.

Different rules were tried for the updating of parameters α and β, but none managed
to find the results obtained through the rule described in Section 3.3. The behavior of
the algorithm also consistently changed when changing the maximum limit given to λ, the
maximum number of calls to TP2SL and resp. TP2UL. The values 1, 2, 3, 4, 5 and 10 were
attempted, and the value 4 was chosen. With the value 5, the CPU time increased by 3%,
improving the average gap only by 0.02%. An almost symmetric effect was produced by
using the value 3.

The periodic intensification (see Section 4.1) is performed every ω iterations. Several
values were tested for ω: 10, 5, 4, 3, 2 and 1. It turned out that frequent executions are
useful for small-size instances. The best results were obtained by setting ω to 1 for n ≤ 40,
and to 5 for larger values.

6 Conclusions

We have considered an extension of the classical vehicle routing problem in which two-
dimensional packing constraints are introduced. This problem features of two classical
combinatorial optimization problems. We have developed, implemented and tested a Tabu
Search algorithm which was applied to a large test set obtained by modifying instances from
the literature. On instances solved optimally by branch-and-cut, the proposed algorithm
also finds an optimal solution in 33 cases out 58. On instances for which the branch-and
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cut was interrupted before completion, our heuristic finds feasible solutions that are on
the average 0.19% better. The Tabu Search algorithm was also applied to a larger set of
360 instances for which the optimum was not known. It succeeded in identifying a feasible
solution in all cases. Our results also show that the introduction of a loading constraint
considerably increases solution costs.
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