A survey on pickup and delivery problems
Part I: Transportation between customers and depot

Authors: Sophie N. Parragh, Karl F. Doerner and Richard F. Hartl
E-mail: Richard.Hartl@univie.ac.at
Address: Institut für Betriebswirtschaftslehre, Universität Wien, Brünnerstr. 72, 1210 Wien, Austria
A survey on pickup and delivery problems
Part I: Transportation between customers and depot

August 17, 2007

Abstract This paper is the first part of a comprehensive survey on pickup and delivery problems. Basically, two problem classes can be distinguished. The first class, discussed in this paper, deals with the transportation of goods from the depot to linehaul customers and from backhaul customers to the depot. This class is denoted as Vehicle Routing Problems with Backhauls (VRPB). Four subtypes can be considered, namely the Vehicle Routing Problem with Clustered Backhauls (VRPCB - all linehauls before backhauls), the Vehicle Routing Problem with Mixed linehauls and Backhauls (VRPMB - any sequence of linehauls and backhauls permitted), the Vehicle Routing Problem with Divisible Delivery and Pickup (VRPDDP - customers demanding delivery and pickup service can be visited twice), and the Vehicle Routing Problem with Simultaneous Delivery and Pickup (VRPSDP - customers demanding both services have to be visited exactly once). The second class, dealt with in the second part of this survey, refers to all those problems where goods are transported between pickup and delivery locations. These are the Pickup and Delivery VRP (PDVRP - unpaired pickup and delivery points), the classical Pickup and Delivery Problem (PDP - paired pickup and delivery points), and the Dial-A-Ride Problem (DARP - paired pickup and delivery points and user inconvenience taken into consideration). Single as well as a multi vehicle versions of the mathematical problem formulations are given for all four VRPB types, the corresponding exact, heuristic, and metaheuristic solution methods are discussed.

1 Motivation and basic definitions
Over the last decades extensive research has been dedicated to modeling aspects as well as optimization methods in the field of vehicle routing. Especially freight transportation involving both pickups and deliveries has
received considerable attention. This is mainly due to the current situation in freight transportation. It reflects the need for improved efficiency, as the traffic volume increases much faster than the street network grows, compare (Eurostat, 2004, 2006) for data on the European situation. Thus, given the current efficiency, this will eventually lead to a breakdown of the system. However, with rapidly increasing computational power intelligent optimization methods can be developed and used to increase the efficiency in freight transportation and alleviate the above mentioned problem. Moreover, along with the increasing use of geographical information systems, companies seek to improve their transportation networks in order to tap the full potential of possible cost reduction. The rapidly growing body of research has led to a somewhat confusing terminology used to describe the various problem types arising in this context. Indeed, the same problem types are denoted by various names and different problem classes are referred to by the same denotations. The aim of this paper is to provide a clear classification scheme as well as a comprehensive survey covering all pickup and delivery routing problems and their variants.

In the field of pickup and delivery problems we distinguish between two problem classes. The first class refers to situations where all goods delivered have to be loaded at one or several depots and all goods picked up have to be transported to one or several depots. Problems of this class are usually referred to as Vehicle Routing Problems with Backhauls (VRPB). The second class will be considered in part two of this survey. It refers to all those problems where goods are transported between pickup and delivery customers or points and will be referred to as Vehicle Routing Problems with Pickups and Deliveries (VRPPD).

The two pickup and delivery problem classes as well as their subclasses are depicted in Figure 1. The black part refers to all problems discussed in the remainder of this paper, the gray part to those that are considered in the second part. The numbers indicated refer to the sections covering the respective problems. The first two indicators in each of the boxes correspond to the mathematical modeling sections. The third indicators refer to the sections dealing with the various solution methods. A more detailed description of the different subclasses as well as the limitations of this survey are given in the following.

1.1 VRPB subclass definitions

The VRPB can be subdivided into four subclasses. In the first two subclasses, customers are either delivery or pickup customers but cannot be both. In the last two subclasses, customers require both, a delivery and a pickup. The first subclass is characterized by the requirement that the group or cluster of delivery customers has to be served before the first pickup customer can be visited. Delivery customers are also denoted as linehaul customers, pickup customers as backhaul customers, respectively.
Fig. 1 Pickup and delivery problems. The numbers indicated refer to the sections covering the respective problems.

In the literature this problem class is denoted as Vehicle Routing Problem with Backhauls (VRPB), a term coined by Goetschalckx and Jacobs-Blecha (1989). This denotation is also used, however, to refer to the case where linehaul and backhaul customers can be served in arbitrary order (see Casco et al., 1988). In order to avoid further confusions we will refer to the all linehauls before backhauls case as VRP with Clustered Backhauls (VRPCB). The single vehicle case will be denoted as Traveling Salesman Problem with Clustered Backhauls (TSPCB).

The second VRPB subclass does not consider a clustering restriction. Mixed visiting sequences are explicitly allowed. Mosheiov (1994) denotes the single vehicle case as Traveling Salesman Problem with Pickup and Delivery (TSPD), Anily and Mosheiov (1994) as TSP with Delivery and Backhauls (TSPDB), and Baldacci et al. (2003) as TSP with Deliveries and Collections (TSPDC). The multi vehicle case has also been referred to as Pickup and Delivery Problem (PDP) in (Mosheiov, 1998), as Mixed Vehicle Routing Problem with Backhauls (MVRPB) in (Salhi and Nagy, 1999, Ropke and Pisinger, 2006) and as Vehicle Routing Problem with Backhauls with Mixed load (VRPBM), e.g. in (Dethloff, 2002). In the following we will denote this problem class as VRP with Mixed linehauls and Backhauls (VRPMB) in the multi vehicle case, and TSP with Mixed linehauls and Backhauls (TSPMB) in the single vehicle case.

The third VRPB subclass describes situations where customers are associated with both a linehaul and a backhaul quantity but, in contrast to subclass four, it is not required that every customer is only visited once. Rather, two visits, one for delivery and one for pickup are possible. In this case, so called lasso solutions can occur, in which first a few customers are visited where only goods are delivered in order to empty the vehicle partially. Then, in the “loop of the lasso”, customers are visited where goods
are delivered and picked up. At the end, the pickups are performed for the customers initially visited for delivery. Gribkovskaja et al. (2007), e.g., denote the single vehicle case as Single Vehicle Routing Problem with Pickups and Deliveries (SVRPPD). Most often however, no clear distinction between this type of problem and subclass four has been made. In order to avoid confusions, we will refer to the single vehicle case as TSP with Divisible Delivery and Pickup (TSPDDP) and to the multi vehicle case as VRP with Divisible Delivery and Pickup (VRPDDP) in order to emphasize that a customer can either be visited once for both pickup and delivery or twice, first for delivery and then for pickup. A further extension to this class would be to also allow the splitting of the delivery or the pickup service. This so called “split delivery” case was studied, e.g. in (Archetti et al., 2006b,a) within the context of the classical VRP but could be extended to the VRPDDP.

The fourth VRPB subclass covers situations where every customer is associated with a linehaul as well as a backhaul quantity and it is imposed that every customer can only be visited exactly once. In the literature this problem class has been first referred to as VRP with simultaneous delivery and pickup points by Min (1989). Gendreau et al. (1999) denote the single vehicle case as TSP with Pickup and Delivery (TSPPD). Angelelli and Mansini (2002) refer to the multi vehicle case as VRP with simultaneous pickup and delivery. In (Nagy and Salhi, 2005) the same problem is referred to as simultaneous VRP with Pickup and Delivery (simultaneous VRPPD), in (Dell’Amico et al., 2006) as VRP with Simultaneous Distribution and Collection (VRPSDC). We will denote this problem class as VRP with Simultaneous Delivery and Pickup (VRPSDP) in the multi vehicle case, and as TSP with Simultaneous Delivery and Pickup (TSPSDP) in the single vehicle case.

1.2 VRPPD subclass definition

The second category referring to problems where goods are transported from pickup to delivery points can also be further divided into two subclasses. The first subclass refers to situations where pickup and delivery points are unpaired. An identical good is considered. Each unit picked up can be used to fulfill the demand of every delivery customer. It will be denoted as Pickup and Delivery VRP (PDVRP). The second subclass comprises the traditional Pickup and Delivery Problem (PDP) and the Dial-A-Ride Problem (DARP). Both types consider transportation requests, each associated with an origin and a destination resulting in paired pickup and delivery points. PDP deal with the transportation of goods while DARP deal with passenger transportation. The DARP is usually formulated in terms of additional constraints or objectives that explicitly refer to user (in)convenience. For further details and corresponding references we refer to the second part of this survey. A further subclass (see Savelsbergh and Sol, 1995), could contain all those problem situations where sets of pickup locations are paired with
sets of delivery locations. However, to the authors’ knowledge this problem case has not been investigated in the literature so far. Consequently, it will not be explicitly considered in this survey.

1.3 Limitations

In the field of vehicle routing two problem classes can be distinguished: Full-truck-load routing problems and less-than-truck-load routing problems. Full-truck-load routing problems deal with vehicles of unit capacity as well as unit demand or supply at every customer location. Thus, in case of a back-hauling situation, a vehicle route can only comprise one delivery and one pickup location between two stops at the depot. In case of paired pickup and delivery locations, no other customer can be visited between a pickup and its associated delivery location (see Archetti and Speranza, 2004, Coslovich et al., 2006, Currie and Salhi, 2003, 2004, de Meulemeester et al., 1997, Doerner et al., 2001, Fleischmann et al., 2004, Gronalt et al., 2003, Gronalt and Hirsch, 2006, Imai et al., 2005, Jordan and Burns, 1984, Jordan, 1987, Powell et al., 1995, 2000a,b, Regan et al., 1996a,b, 1998, Russell and Challinor, 1988, Wang and Regan, 2002, Yang et al., 1998, 2004, etc.).

Furthermore, there exists a problem class that is by definition not part of the full-truck-load class, since vehicles with capacity two are considered. However, these problems are strongly related to the full-truck-load category since they originate from the same application area (container dispatching). The aim of this paper is to present a concise classification scheme and survey limited to vehicle routing problems involving pickup and delivery operations where the routing and not the scheduling aspect is of predominant importance. Consequently, full-truck-load dispatching approaches as well as approaches strongly related to this class, such as e.g. (Archetti et al., 2005, le Blanc et al., 2006), will not be covered in this article. Thus, also literature on sequencing problems, e.g. arising at intermodal stations, involving gantry crane pickup and delivery operations (compare e.g. Böse et al., 1999, Böse et al., 2000, Gutenschwager et al., 2003) will not be part of this survey.

1.4 Structure of the survey

This article is organized as follows. First, model formulations for the single as well as the multi vehicle case are presented in order to clearly define the different pickup and delivery subclasses. Then, for each problem class an overview of the different solution methods proposed in the literature is given. This is followed by the description of the benchmark instances used. Finally a conclusion section provides some hints on the currently best approaches for each problem class and gives directions for future research.
2 Mathematical problem formulation

In the following section a consistent mathematical problem formulation will be presented. First, the notation used throughout the paper is given. Then, two basic problem formulations are introduced and extended to all variations of the VRPB. Note that the aim of this section is to clearly define the different problem types regardless their computational complexity.

2.1 Notation

\(n \) . . . number of pickup vertices
\(\tilde{n} \) . . . number of delivery vertices in case of paired pickups and deliveries \(n = \tilde{n} \)
\(P \) . . . set of backhauls or pickup vertices, \(P = \{1, \ldots, n\} \)
\(D \) . . . set of linehauls or delivery vertices, \(D = \{1, \ldots, \tilde{n}\} \)
\(q_i \) . . . demand/supply at vertex \(i \); pickup vertices are associated with a positive value, delivery vertices with a negative value; at the start depot 0 and the end depot \(n + \tilde{n} + 1 \) the supply is \(q_0 = q_{n+\tilde{n}+1} = 0 \)
\(c_{ij} \) . . . cost to traverse arc or edge \((i, j)\) with vehicle \(k \)
\(t_{ij}^k \) . . . travel time from vertex \(i \) to vertex \(j \) with vehicle \(k \)
\(R \) . . . set of vehicles
\(C_k \) . . . capacity of vehicle \(k \)
\(T_k \) . . . maximum route duration of vehicle/route \(k \)

This notation is valid for the symmetric as well as for the asymmetric case. In the symmetric case \(t_{ij}^k = t_{ji}^k \) and \(c_{ij}^k = c_{ji}^k \), arc \((i, j)\) and arc \((j, i)\) could thus be modeled by one edge. Consequently, fewer variables would be needed to formulate the symmetric case. However, since we focus on problem definition and not on computational efficiency we refrain from presenting these variants here. VRPB are modeled on complete graphs \(G = (V, A) \) where \(V \) is the set of all vertices \(V = \{0, n + \tilde{n} + 1\} \cup P \cup D \), with \(A \) denoting the set of all arcs.

During the optimization process some or all of the following decision variables are determined, depending on the problem considered.

\[
x_{ij}^k = \begin{cases} 1, & \text{if arc } (i, j) \text{ is traversed by vehicle } k \\ 0, & \text{else} \end{cases}
\]
\(Q_i^k \) . . . load of vehicle \(k \) when arriving at vertex \(i \)
\(B_i^k \) . . . beginning of service of vehicle \(k \) at vertex \(i \)
Note that vehicle dependent start as well as end vertices can easily be introduced into the model. However, for the sake of simplicity we will not consider this extension in our formulation.

In the single vehicle problem formulation the superscript k can be omitted, resulting in the parameter notations t_{ij}, c_{ij}, C, T and the decision variables x_{ij}, Q_i, B_i.

2.2 Single vehicle pickup and delivery problem formulations

The single vehicle formulation for the different pickup and delivery problem classes is based on an open TSP formulation. Open refers to the fact that the resulting route is not a cycle but a path since the depot is denoted by two different indices.

The objective function (1) minimizes total routing cost. Constraint sets (2) and (3) ensure that each vertex is visited exactly once. That no arcs entering the origin depot 0 and no arcs leaving the destination depot $n+\tilde{n}+1$ are routed is guaranteed by (4) and (5), respectively.

$$
\min \sum_{i \in V} \sum_{j \in V} c_{ij} x_{ij} \tag{1}
$$

subject to:

$$
\sum_{i \in V} x_{ij} = 1 \quad \forall j \in V \setminus \{0\} \tag{2}
$$

$$
\sum_{j \in V} x_{ij} = 1 \quad \forall i \in V \setminus \{n+\tilde{n}+1\} \tag{3}
$$

$$
x_{0i} = 0 \quad \forall i \in V \tag{4}
$$

$$
x_{n+\tilde{n}+1,j} = 0 \quad \forall j \in V \tag{5}
$$

$$
x_{ij} \in \{0,1\} \quad \forall i \in V, j \in V \tag{6}
$$

Subtour elimination constraints

$$
\sum_{i \in S} \sum_{j \notin S} x_{ij} \geq 1 \quad \forall S \subseteq V \setminus \{n+\tilde{n}+1\}, S \neq \emptyset \tag{7}
$$

or

$$
Q_j \geq (Q_i + q_i)x_{ij} \quad \forall i \in V, j \in V \tag{8a}
$$

$$
\max \{0, q_i\} \leq Q_i \leq \min \{C, C + q_i\} \quad \forall i \in V \tag{8b}
$$

or

$$
B_j \geq x_{ij}(B_i + d_i + t_{ij}) \quad \forall i \in V, j \in V \tag{9}
$$

The objective function (1) minimizes total routing cost. Constraint sets (2) and (3) ensure that each vertex is visited exactly once. That no arcs entering the origin depot 0 and no arcs leaving the destination depot $n+\tilde{n}+1$ are routed is guaranteed by (4) and (5), respectively.
Constraints (7) – (9) present several alternative possibilities to avoid subtours and thus guarantee route-connectivity. The first option would be to append constraint set (7). This formulation makes use of subsets to ensure connectivity. At least one routed arc has to leave every subset $S \subseteq V \setminus \{n + \bar{n} + 1\}$. The solution to a linear programming relaxation of a formulation involving these constraints gives a good lower bound (cf. Toth and Vigo, 2002a). However, the cardinality of this set of constraints grows exponentially with n.

The second option, given in (8), makes use of an additional load variable Q_i to avoid subtours. Whenever only deliveries are made along one tour, the vehicle load decreases from customer to customer ($q_i > 0 \ \forall i$). Thus every customer must be associated with a different value of Q_i and no subtours can occur. However, these constraints are not able to eliminate subtours in a backhauling situation since two customers might be associated with the same vehicle load. The only exception is the clustered case (TSPCB).

The third option, given in (9), uses an additional time variable B_i, referring to the beginning of service at vertex i. Again, given that $t_{ij} > 0$ or $t_{ij} + d_j > 0$ for all i, j, every vertex i is associated with a different time variable and subtours are avoided. This option should be chosen whenever other time related constraints, such as time windows or maximum user ride times are considered. The linear programming relaxations of the latter two options provide weaker lower bounds, however they have a polynomial cardinality (cf. Toth and Vigo, 2002a).

A fourth option (not presented here) would be to add the traditional Miller-Tucker-Zemlin (MTZ) subtour elimination constraints, compare (Miller et al., 1960), to the above model.

Note that precedence constraints as well as additional constraints, such as e.g. a Last-In-First-Out (LIFO) loading rule, maximum ride time and route duration constraints can also be guaranteed by means of infeasible path constraints. However, constraints of this type decrease the readability of a model and since the aim of this section is to clearly define the different VRPB subclasses, this option will not be considered in the following.

2.2.1 TSPCB

The all linehauls before backhauls case can be modeled on the basis of a clustered TSP with two clusters, one corresponding to all linehaul customers, and one corresponding to all backhaul customers, with the additional condition that the backhaul cluster has to be visited after the linehaul cluster. This is ensured by adding,

$$x_{ij} = 0 \quad \forall i \in P, j \in D,$$

(10)

to the above formulation (1) – (7). Constraints (10) state that no arc can be routed from the backhaul to the linehaul customer set. Consequently, only one arc from the linehaul to the backhaul customer set can be used. Note that these constraints become redundant if appropriate graph pruning
techniques are applied prior to solving the mathematical program (cf. Toth and Vigo, 1997, 2002b).

2.2.2 TSPMB In the mixed linehauls and backhauls case the order of linehauls and backhauls is only restricted by the amount of goods the vehicle is able to transport. In addition to the basic model (1) – (6),

\[Q_0 = \sum_{i \in D} q_i, \quad (11) \]

is required, which guarantees that the vehicle starts with a load equal to the total amount to be delivered. Thus constraint sets (8) are needed to ensure the loading restriction. However, to avoid subtours either option one, given in (7), or option three, given in (9), has to be used. If the vehicle’s capacity is greater than or equal to the sum of the total linehaul and the total backhaul amount the problem reduces to the simple TSP.

2.2.3 TSPDDP For the divisible delivery and pickup case the same formulation as for the TSPMB can be used. The only difference consists in the fact that all customers are associated with both a linehaul as well as a backhaul quantity and that customers can be visited twice, once for pickup and once for delivery service. This can be achieved by modelling every customer associated with both quantities as two vertices, one for the linehaul and one for the backhaul amount. In this sense the TSPDDP can be seen as a special case of the TSPMB since it can be transformed into the latter.

2.2.4 TSPSDP To model the simultaneous pickup and delivery case the basic formulation (1) - (6), either (7) or (9) to avoid subcycles and the capacity constraints (8) are required. The only difference between the divisible delivery and pickup case and the simultaneous pickup and delivery case refers to the approach chosen to deal with customers that are both, linehaul and backhaul customers. In the former case those customers are modeled as if they were two customers, one linehaul and one backhaul customer, whereas in the latter case every customer can only be visited exactly once \((\tilde{n} = 0)\). Let \(q_+^i\) denote the backhaul amount and \(q_-^i\) the linehaul amount at customer \(i\), a constraint ensuring that the vehicle starts its tour with the total amount of goods to be delivered,

\[Q_0 = \sum_{i \in P} q_i^- , \quad (12) \]

has to be added. Then, only the net demand of every customer is considered. It is positive whenever the backhaul amount exceeds the linehaul amount and vice versa:

\[q_i = q_+^i - q_-^i \ldots \text{difference between backhaul and linehaul amount at vertex } i.\]
2.2.5 **Time window constraints** A last class of constraints that can be added to all of the above models concerns the compliance with Time Windows (TW),

\[e_i \leq B_i \leq l_i \quad \forall i \in V. \]

(13)

In case of TW, constraint set (9) has to be used.

2.3 **Multi vehicle pickup and delivery problem formulations**

The basic model for multi vehicle pickup and delivery problems is an adapted three index VRP formulation of the one proposed in Cordeau et al. (2002, p. 158f.) for the VRPTW.

\[
\min \sum_{k \in K} \sum_{i \in V} \sum_{j \in V} c_{ij}^k x_{ij}^k
\]

subject to:

\[
\sum_{k \in K} \sum_{j \in V} x_{ij}^k = 1 \quad \forall i \in V \setminus \{0, n + \tilde{n} + 1\} \quad (15)
\]

\[
\sum_{j \in V} x_{0j}^k = 1 \quad \forall k \in K \quad (16)
\]

\[
\sum_{i \in V} x_{i, n + \tilde{n} + 1}^k = 1 \quad \forall k \in K \quad (17)
\]

\[
\sum_{i \in V} x_{ij}^k - \sum_{i \in V} x_{ji}^k = 0 \quad \forall j \in V \setminus \{0, n + \tilde{n} + 1\}, k \in K \quad (18)
\]

\[
B_i^k \geq x_{ij}^k (B_i^k + d_i + t_{ij}^k) \quad \forall i \in V, j \in V, k \in K \quad (19)
\]

\[
Q_i^k \geq (Q_i^k + q_i) x_{ij}^k \quad \forall i \in V, j \in V, k \in K \quad (20)
\]

\[
\max \{0, q_i\} \leq Q_i^k \leq \min \{C_i^k, C_i^k + q_i\} \quad \forall i \in V, k \in K \quad (21)
\]

\[
x_{ij}^k \in \{0, 1\} \quad \forall i \in V, j \in V, k \in K \quad (22)
\]

The objective function (14) minimizes routing cost over all vehicles. Constraint set (15) guarantees that every vertex is served exactly once. Constraint sets (16) and (17) ensure that every vehicle starts at the depot and returns to the depot at the end of its route. Note that this does not mean that every vehicle has to be used. A vehicle may only use arc \((0, n + \tilde{n} + 1)\) meaning that it does not leave the depot. Constraint set (18) refers to the usual flow conservation. Time variables are introduced in constraint set (19) to ensure that no subtours occur and to facilitate the introduction of time related constraints later on. Constraint sets (20) and (21) ensure that a vehicle’s capacity is not violated throughout its tour and they also guarantee the elimination of subtours, when applied to the traditional VRP.
2.3.1 VRPCB The all linehauls before backhauls case requires the introduction of an additional set of constraints that guarantees that no arc from a backhaul to a linehaul customer can be used. Thus, ensuring that every vehicle first visits all linehaul customers belonging to its route,

$$x_{ij}^k = 0 \quad \forall i \in P, j \in D, k \in K.$$ (23)

As mentioned above, constraints (23) become redundant if the arc set of model (14) – (22) is appropriately defined.

2.3.2 VRPMB The second version that we denoted VRP with mixed linehauls and backhauls, does not require constraints (23). It can be solved by simply applying the basic version of the problem formulation, given in (14) – (22), and the additional set of constraints that every vehicle has to start with a load equal to the total amount to be delivered,

$$Q_0^k = \sum_{j \in D} q_j \sum_{i \in V} x_{ij}^k \quad \forall k \in K.$$ (24)

2.3.3 VRPDDP To model the VRPDDP the same formulation as for the VRPMB can be used. In contrast to the VRPMB every customer is associated with a linehaul as well as a backhaul quantity and every customer can be visited at most twice, first for delivery and second for pickup service. Thus, modeling every customer that demands both services as two separate customers, one for pickup and one for delivery, suffices to accommodate this problem class.

2.3.4 VRPSDP The fourth class of VRPB deals with situations of simultaneous delivery and pickup requirements. Each customer is both, a linehaul and a backhaul customer. In contrast to the divisible delivery and pickup problem, where customers belonging to both sets are modeled as two separate customers, every customer can only be visited exactly once ($\tilde{n} = 0$).

Again, let q_i^+ denote the backhaul amount and q_i^- the linehaul amount at customer i, a constraint ensuring that each vehicle starts its tour with the total amount of goods to be delivered,

$$Q_0^k = \sum_{j \in P} q_j \sum_{i \in V} x_{ij}^k \quad \forall k \in K,$$ (25)

has to be added to the basic model (14) – (22). Then, the net demand of every customer is considered which is positive whenever the backhaul amount exceeds the linehaul amount and vice versa. Thus, the definition of q_i becomes,

$$q_i = q_i^+ - q_i^- \ldots \text{ difference between backhaul and linehaul amount at vertex } i.$$
However, also other alternative formulations for the VRPSDP exist. We refer the interested reader, e.g., to (Desaulniers et al., 1998, p.71).

2.3.5 Additional Constraints Finally two more sets of constraints can be added to all of the above problem classes. These are constraints corresponding to time window and maximum route duration restrictions,

\[e_i \leq B^k_i \leq l_i \quad \forall i \in V, k \in K, \]
\[B^k_{2n+1} - B^k_0 \leq T^k \quad \forall k \in K. \]

The latter are motivated by labor regulations, concerning the amount of hours a driver is allowed to drive per day.

Note that the above formulations are not linear due to constraint sets (8a) and (9) in the single vehicle case as well as (20) and (19) in the multi vehicle case. However, these constraints can easily be reformulated in a linear way by utilizing the big \(M \) formulation (cf. Cordeau, 2006).

3 Solution approaches for VRPB

The development of VRPB was motivated by the fact that by combining linehaul with backhaul tours significant cost reduction due to less empty hauls can be achieved. Beullens (2001) compares and analyses the various backhauling strategies, i.e. the VRPMB, the VRPCB as well as an on call backhaul strategy. The impacts of reverse logistics are also subject to investigation in (Beullens et al., 2004, Dethloff, 2001, Fleischmann et al., 1997). van Breedam (1995) gives an overview of VRP with side constraints, covering the VRP with mixed as well as with clustered backhauls. A recent survey on pickup and delivery problems that was developed in parallel to this survey can be found in (Berbeglia et al., 2007).

While we will not describe general solution methods in detail, we provide the interested reader with some references. Information on local search methods can be found, e.g., in (Aarts and Lenstra, 1997). Neighborhood based methods are discussed, e.g. in (Bräysy and Gendreau, 2005, Funke et al., 2005), metaheuristics in (Hoos and Stützle, 2005). Methods used in the context of exact solution algorithms, such as additive bounding, branch and cut, and branch and price are described, e.g., in (Barnhart et al., 1998, Desaulniers et al., 2005, Fischetti and Toth, 1989, Padberg and Rinaldi, 1991).

In the following different solution methods for the various VRPB are discussed. First, the all linehauls before backhauls case will be presented, followed by the mixed linehauls and backhauls, the divisible delivery and pickup, and the simultaneous delivery and pickup case. Within each problem class the solution approaches will be presented in subsections devoted to exact, heuristic and metaheuristic methods. The benchmark instances mentioned will be described in Section 4. Whenever it was prohibitive w.r.t. the
length of this paper to describe all methods proposed in detail, an overview is given in tabular form. Only contributions we considered more important due to their recency or originality (marked by an asterisk in the respective tables) are described in further detail in this case.

3.1 All linehauls before backhauls (TSPCB, VRPCB)

The TSPCB can be viewed as a special case of the Clustered Traveling Salesman Problem (CTSP), where only two clusters are considered. The CTSP was first formulated in (Chisman, 1975). Already in (Lokin, 1978) an application of the CTSP to a backhaul problem is suggested. Thus, all solution algorithms for CTSP, namely those presented in (Gendreau et al., 1996b, Jongens and Volgenant, 1985, Laporte et al., 1996, Potvin and Guertin, 1996, etc.), are also valid solution techniques for the TSPCB with the additional constraint that the set of linehaul customers is visited first. The first mathematical problem formulation explicitly dealing with the VRPCB was presented in (Goetschalckx and Jacobs-Blecha, 1989). A survey on solution methods can be found in (Toth and Vigo, 2002b).

3.1.1 Exact approaches The first exact approach for the VRPCB was introduced in (Yano et al., 1987). The authors used a branch and bound algorithm to generate an optimal routing plan with up to four linehaul and four backhaul customers per route, considering opening and closing times at destinations, maximal driving time as well as vehicle capacity concerning weight and volume.

In (Gélinas et al., 1995) a branch and bound strategy for the VRPCB with TW that branches on time intervals is presented. Problem instances from Solomon (1987) for the VRP with TW are adapted to the backhaul case. The largest instance solved consists of 100 customers.

In (Toth and Vigo, 1997) a mathematical problem formulation for the VRPCB is presented. Based on various relaxations lower bounds could be computed. A branch and bound algorithm is proposed that generates optimal solutions to most of the benchmark instances provided in (Goetschalckx and Jacobs-Blecha, 1989, Toth and Vigo, 1996, 1999).

Another exact algorithm as well as lower bounding procedures are proposed in (Mingozzi et al., 1999). Mingozzi et al. introduce a new (0-1) integer problem formulation. Variable reduction via pricing allows for solving the reduced problem. Benchmark instances with up to 100 customers (Goetschalckx and Jacobs-Blecha, 1989, Toth and Vigo, 1996) are solved to optimality.

3.1.2 Heuristics Quite a lot of research has been conducted in the field of heuristic methods for VRPCB. An overview of existing work is given in Table 1 in chronological order divided into single and multi vehicle approaches. In the first column the respective references are listed. Column two refers
to the objective function used, column three states additional constraints or the problem type considered. In column four the proposed algorithm is sketched and in column five either the benchmark instances, as described in Table 8, used to test the respective algorithm or the size of the largest problem instance solved are reported. All methods described in further detail below are marked by an asterisk.

Only little research has been conducted in the area of heuristics for the single vehicle case. Gendreau et al. (1996a) adapt six different construction-improvement heuristics to the TSPCB: Three different versions of the GENIUS heuristic, originally developed in (Gendreau et al., 1992) for the TSP, are investigated and compared to three other construction-improvement heuristics, i.e. GENI (GENERALized Insertion) construction with Or-opt improvement (Or, 1976), Cheapest Insertion (CI) construction with US (Un-stringing and Stringing) improvement and CI construction with Or-opt improvement. GENI is based on the idea that whenever a new vertex is inserted into a route it is connected to the vertices closest to it even if these were not connected previous to this insertion. The US operator refers to removing a vertex from the route and inserting it back in. The GENI idea is used for vertex insertion and its reversal for vertex removal.

The multi vehicle case has received considerably more attention. One of the earliest heuristic methods was developed by Goetschalckx and Jacobs-Blecha (1989). The clustering as well as the routing part are solved by means of a spacefilling curve heuristic, i.e. generating a continuous mapping of the unit circle onto the unit square preserving closeness across vertices. Results for its combination with 2-opt and 3-opt improvement heuristics (Lin, 1965) are discussed.

In (Thangiah et al., 1996) another construction-improvement heuristic is proposed. The construction phase consists of a push-forward insertion algorithm improved by λ-interchange (Osman, 1993) and 2-opt*-exchange heuristics (Potvin and Rousseau, 1995).

In (Toth and Vigo, 1996, 1999) a cluster first route second algorithm is proposed. Toth and Vigo establish a clustering algorithm that uses the solution of the relaxed VRPCB as input. k linehaul as well as k backhaul clusters are obtained from the clustering step. Each of the linehaul clusters is matched with a backhaul cluster. A farthest insertion procedure is applied to the TSPCB instances followed by an intra-route improvement phase. Final refinements on the whole routing plan are achieved by the application of an inter-route improvement phase, using inter-route 1- and 2-exchanges.

Another cluster first route second algorithm was proposed in (Anily, 1996). The clustering phase is accomplished by a modified circular partitioning heuristic followed by the construction of traveling salesman tours through the different clusters (each cluster contains either only linehaul or only backhaul customers). Then, linehaul clusters are assigned to backhaul clusters (Kuhn, 1955). Finally, a route construction phase is initiated determining the optimal connections between depot, linehaul and backhaul clusters.
Table 1 Heuristics for the VRPCB

<table>
<thead>
<tr>
<th>Reference</th>
<th>Obj.</th>
<th>Con./Type</th>
<th>Algorithm</th>
<th>Bench./Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Gendreau et al.</td>
<td>min. RC</td>
<td>-</td>
<td>3 GENIUS based heur.; Cheapest Insertion (CI) -</td>
<td>GHL96</td>
</tr>
<tr>
<td>(1996a)</td>
<td></td>
<td></td>
<td>Unstringing Stringing (US); GENI - Or-opt; CI -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Or-opt</td>
<td></td>
</tr>
<tr>
<td>Gendreau et al.</td>
<td>min. RC</td>
<td>-</td>
<td>3/2-approximation algorithm, based on (Christofides, 1975)</td>
<td>-</td>
</tr>
<tr>
<td>(1997)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deif and Bodin</td>
<td>min. RC</td>
<td>RL</td>
<td>savings based construction heur.</td>
<td>up to 300</td>
</tr>
<tr>
<td>(1984)</td>
<td></td>
<td></td>
<td></td>
<td>cust. (10-50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bh.)</td>
</tr>
<tr>
<td>* Goetschalckx</td>
<td>min. RC</td>
<td>-</td>
<td>space filling curves construction heur., 3-opt</td>
<td>GJ89</td>
</tr>
<tr>
<td>and Jacobs-Blecha</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1989)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min et al. (1992)</td>
<td>min. RC</td>
<td>MD</td>
<td>cluster first route second</td>
<td>up to 161</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cust.</td>
</tr>
<tr>
<td>Derigs and Metz</td>
<td>min. RC</td>
<td>TW, HF,</td>
<td>approximate solutions based on set partitioning</td>
<td>up to 160</td>
</tr>
<tr>
<td>Goetschalckx and</td>
<td>min. RC</td>
<td>-</td>
<td>general assignment based heur.</td>
<td>up to 150</td>
</tr>
<tr>
<td>Jacobs-Blecha (1993)</td>
<td></td>
<td></td>
<td></td>
<td>cust. (20-50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bh.)</td>
</tr>
<tr>
<td>* Toth and Vigo</td>
<td>min. RC</td>
<td>-</td>
<td>cluster via Lagr. relaxation, routing,</td>
<td>GJ89, TV96, TV99</td>
</tr>
<tr>
<td>(1996, 1999)</td>
<td></td>
<td></td>
<td>inter/intra route optimization</td>
<td></td>
</tr>
<tr>
<td>* Thangiah et al.</td>
<td>min. NV.</td>
<td>TW</td>
<td>push-forward insertion; improved by</td>
<td>GDDS95, TPS96</td>
</tr>
<tr>
<td>(1996)</td>
<td></td>
<td></td>
<td>A-interchanges, 2-opt* exchanges</td>
<td></td>
</tr>
<tr>
<td>* Anily (1996)</td>
<td>min. RC</td>
<td>-</td>
<td>circular regional partitioning with delivery</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and bh. heur.</td>
<td></td>
</tr>
</tbody>
</table>

Bench. = Benchmark, bh. = backhauls, Con. = Constraints, cust. = customers, HV = Heterogeneous Vehicles, heur. = heuristic, Lagr. = Lagrange, MD = Multi Depot, NV = Number of Vehicles, Obj. = Objective(s), RC = Routing Cost, RL = Route Length, TW = Time Windows. The respective benchmark instances are described in Section 4. Entries marked by an asterisk (*) are described in further detail in the text.

3.1.3 Metaheuristics In this section the different metaheuristic approaches to solve the VRPCB are introduced. Among the methods discussed a further distinction applies. On the one hand, there are metaheuristic approaches that are population based or related to population based methods, such as genetic algorithms or ant colony optimization, and, on the other hand, there are methods that are based on different local search neighborhoods, such as tabu search, variable neighborhood search or simulated annealing. Table 2 provides an overview of existing work in this field. For each reference the objectives considered, additional constraints used, a sketch of the proposed algorithm as well as the benchmark instances solved are given.
The first metaheuristic solution approach for the VRPCB was proposed in (Potvin et al., 1996). Potvin et al. present a genetic algorithm that is combined with a greedy route construction algorithm. Customers are inserted one by one based on an a priori ordering determined by the genetic algorithm.

A tabu search heuristic for the VRPCB with TW is proposed in (Duhamel et al., 1997). The developed method uses 2-opt*, Or-opt and swap neighborhoods. At each iteration the neighborhood searched is selected randomly in order to enlarge the size of the neighborhood actually searched and to introduce diversification.
Osman and Wassan (2002) propose a reactive tabu search that uses an additional operator responsible to control diversification and intensification phases based on the detection of repeated solutions. Based on the λ-interchange operator, introduced in (Osman, 1993), neighborhoods of different size are explored.

Zhong and Cole (2005) develop a cluster first route second approach. They use a guided local search algorithm to improve the solution obtained from an adapted sweep construction heuristic in the clustering phase. In the routing phase an algorithm, called section planning, is executed. It inserts new routes to achieve feasibility and arranges customers within routes such that travel distances are decreased.

Another tabu search algorithm was proposed in (Brandão, 2006). Three different procedures were tested to generate the initial solution. The first is based on open VRP solutions and the second two are based on a K-tree relaxation of the VRP. The tabu search sequentially applies three phases using neighborhoods defined by insert and swap moves. An intra-route repair operator is applied if the precedence constraint (linehauls before backhauls) is violated.

Ropke and Pisinger (2006) propose a unified heuristic based on a large neighborhood search algorithm. It can be used to solve three VRP classes, namely the VRPCB, the VRBMB and the VRPSDP with and without TW, by transforming them into rich PDP with TW. The term rich refers to the additional features that need to be considered, such as pickup and delivery precedence numbers, in order to accommodate the different characteristics of the various problem types. The proposed heuristic uses different removal and insertion heuristics. At every iteration a certain number of requests is removed from the routes by means of either random, Shaw (Shaw, 1998), worst request, cluster or history based removal. The free requests are then inserted using a basic or a regret insertion heuristic. The choice of removal and insertion procedure is determined by a learning and monitoring layer that reports how often a certain removal or insertion procedure contributed to the construction of a new accepted solution.

Ganesh and Narendran (2007) investigate a variation of the VRPCB arising in the context of blood distribution to hospitals. Instead of two sets of customers three sets are considered, consisting of either pure linehaul customers, pure backhaul customers or those that are both. All customers that require a delivery service have to be visited first. Ganesh and Narendran (2007) develop a cluster-and-search heuristic (CLOVES), that clusters vertices based on spatial proximity, determines their orientation by means of a shrink wrap algorithm and then assigns them to vehicles. A genetic algorithm is used to improve the solution found by the construction heuristic.

3.1.4 Summary Over the years with increasing computational power a shift from simple heuristic methods towards more sophisticated metaheuristic solution procedures can be observed. Thus, recent state-of-the-art methods in the field of VRPCB predominantly belong to the metaheuristic do-
main. Comparison can be done by looking at the different results achieved for the same set of benchmark instances. In case of the VRPCB without TW, the two benchmark instances most often used are the ones of (Goetschalckx and Jacobs-Blecha, 1989) (GJ89) and (Toth and Vigo, 1996) (TV96). The largest instance solved to optimality of the GJ89 data set comprises 90 customers and for the TV96 data set 100 customers (see Mingozzi et al., 1999). The latest new best results for these data sets have been proposed in (Ropke and Pisinger, 2006) and (Brandão, 2006). In case of the VRPCB with TW the data set proposed in (Gélinas et al., 1995) (GDDS95) is the prevalent one. The largest instance solved to optimality within this data set consists of 100 customers (cf. Gélinas et al., 1995). Most recent new best results have also been reported in (Ropke and Pisinger, 2006).

3.2 Mixed linehauls and backhauls (TSPMB, VRPMB)

We now turn to the problem of VRPMB where linehaul and backhaul customers can occur in any order along the route. The first solution methods proposed belong to the field of heuristics (compare, e.g., Casco et al., 1988, Golden et al., 1985). An analysis of different parameter settings in heuristic solution procedures for different VRP, including the VRPMB, is provided in (van Breedam, 2002). In (van Breedam, 2001) the performance of simulated annealing, tabu search as well as a descent heuristic applied to the VRP in general including the VRPMB case is studied. In the following the various exact, heuristic and metaheuristic solutions methods proposed in the literature will be presented.

3.2.1 Exact methods

Exact solution methods for the VRPMB have only been proposed for the single vehicle case. These are listed in Table 3. Síural and Bookbinder (2003), e.g., propose a new mathematical problem formulation using adaptations of the MTZ subtour elimination constraints for the TSP (Miller et al., 1960) ensuring feasibility of the vehicle load. Several tight LP relaxations are then considered allowing for solving medium-sized practical problems. Baldacci et al. (2003) discuss valid inequalities and present lower bounds for the single vehicle case. These are embedded in a branch and cut algorithm.

3.2.2 Heuristics

Several heuristic algorithms have been proposed to solve the single as well as the multi vehicle case of the VRPMB. Table 4 gives an overview of the different methods, providing information w.r.t. the objectives used, additional constraints and the problem type considered, the algorithm proposed and the benchmark instances or the size of the largest instance used to test the respective algorithm.

Two heuristics for the single vehicle case were proposed in (Mosheiov, 1994). The first heuristic consists in constructing an (optimal) traveling salesman tour through all the customer vertices excluding the depot (by
Table 3 Exact methods for the VRPMB

<table>
<thead>
<tr>
<th>Reference</th>
<th>Obj.</th>
<th>Con.</th>
<th>Algorithm</th>
<th>Benchmark/Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>The single vehicle case</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tzoreff et al. (2002)</td>
<td>min. RC</td>
<td>-</td>
<td>linear time algorithm for tree graphs;</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>polynomial time algorithm for cycle or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>warehouse graph 1</td>
<td></td>
</tr>
<tr>
<td>* Súral and</td>
<td>min. RC</td>
<td>-</td>
<td>optional bh.; tight LP relaxations; exact</td>
<td>up to 30 cust. (20,</td>
</tr>
<tr>
<td>Bookbinder (2003)</td>
<td></td>
<td></td>
<td>solutions</td>
<td>30, 40% bh.)</td>
</tr>
<tr>
<td>* Baldacci et al.</td>
<td>min. RC</td>
<td>-</td>
<td>cutting plane approach</td>
<td>GLV99</td>
</tr>
<tr>
<td>(2003)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bh. \(\equiv\) backhaul(s), Con. \(\equiv\) Constraints, cust. \(\equiv\) customers, Obj. \(\equiv\) Objective(s), RC \(\equiv\) Routing Cost.

The respective benchmark instances are described in Section 4. Entries marked by an asterisk (*) are described in further detail in the text.

1 i.e. two parallel corridors which are connected by at least two aisles.

means of an exact algorithm or, if the problem instance is too large, a heuristic). Then the best starting point is chosen that makes the tour feasible w.r.t. capacity violations. At this point the depot is inserted. The second heuristic extends the cheapest insertion heuristic for the TSP to the TSPMB. First an optimal traveling salesman tour through all the linehaul points is constructed. Then the backhaul customers are inserted along this tour w.r.t. the cheapest feasible insertion criterion, i.e. the capacity constraint has to be respected.

Another heuristic for the single vehicle case is developed in (Anily and Mosheiov, 1994). The proposed heuristic algorithm is based on the construction of a minimal spanning tree (MST) through all the vertices (including the depot). Two copies of the MST are then used to construct a feasible pickup and delivery tour. They prove that the proposed heuristic has a worst case bound of 2.

An early construction heuristic for the multi vehicle case is proposed in (Casco et al., 1988). They introduce a procedure based on the Clarke-Wright algorithm (with reduced vehicle capacity) to construct initial linehaul tours. A load-based insertion criterion is used to insert the remaining backhaul customers, i.e. a delivery load after a pickup is penalized.

In (Mosheiov, 1998) also the multi vehicle case of the VRPMB is considered. Two tour partitioning heuristics are proposed. Initially a giant TSP through all the vertices (except the depot) is solved. The exhaustive iterated tour partitioning algorithm proceeds by identifying the longest segment that can be served by one vehicle from the first vertex. According to the length of this segment the tour is partitioned. This procedure is sequentially started from each vertex along the tour to identify the best partitioning w.r.t. the total distance traveled.

Salhi and Nagy (1999) propose an extension to the load based insertion procedure proposed in (Golden et al., 1985). Instead of a single backhaul
<table>
<thead>
<tr>
<th>Reference</th>
<th>Obj.</th>
<th>Con./Type</th>
<th>Algorithm</th>
<th>Benchmark/Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>The single vehicle case</td>
<td></td>
</tr>
<tr>
<td>* Mosheiov (1994)</td>
<td>min. RC</td>
<td>-</td>
<td>2 algorithms. (1) pickup and delivery along optimal tour; (2) cheapest feasible insertion up to 200 cust. (50% bh.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Anily and Mosheiov (1994) min. RC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2MST heuristic. (based on 2 copies of a MST through all vertices)</td>
<td>up to 100 cust.</td>
</tr>
<tr>
<td>The multi vehicle case</td>
<td></td>
<td></td>
<td>Golden et al. (1985) min. RC RL Clarke-Wright(^1) algorithm to schedule linehauls, cheapest insertion of bh. Gal.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Casco et al. (1988) min. RC RL Clarke-Wright algorithm to schedule linehauls, load-based insertion of bh.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Halse (1992) min. RC -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Mosheiov (1998) min. RC -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 heuristics. (1) exhaustive iterated tour partitioning; (2) full capacity iterated tour partitioning up to 100 cust.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Salhi and Nagy (1999) min. RC SD, MD cluster insertion heuristic SN99a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wade and Salhi (2002) min. RC position of 1st bh. VRP solution, insertion algorithm for bh. GJ89, TV96</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dethloff (2002) min. RC -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Nagy and Salhi (2005) min. NV, min. RC RL, SD, MD heuristic algorithm. (1) construct weakly feasible VRPB (2) improvement (3) make strongly feasible (4) improvement SN99a</td>
<td></td>
</tr>
</tbody>
</table>

bh. = backhauls, Con. = Constraints, cust. = customers, MD = Multi Depot, MST = Minimal Spanning Tree, NV = Number of Vehicles, Obj. = Objective(s), RC = Routing Cost, RL = Route Length, SD = Single Depot, The respective benchmark instances are described in Section 4. Entries marked by an asterisk (*) are described in further detail in the text.

\(^1\) compare (Clarke and Wright, 1964)
3.2.3 Metaheuristics

Metaheuristics have not been applied as extensively to the VRPMB as to other problem types. In Table 5 an overview of the different metaheuristic approaches developed for the problem at hand is given. Information is given w.r.t. the objective function used, additional constraints applied, the type of algorithm developed as well as the benchmark instances used. We refer to the previous sections for a more detailed description of those entries that are marked by an asterisk.

3.2.4 Summary

The largest TSPMB instance solved to optimality is reported in (Baldacci et al., 2003). It is a single vehicle instance of the data set provided in (Gendreau et al., 1999), containing 200 customers. The VRPMB instances most widely used are those proposed in (Salhi and Nagy, solved. Then the borderline customers are inserted one-by-one into the constructed routes.

Nagy and Salhi (2005) propose an integrated construction-improvement heuristic for both the VRPMB and the VRPSDP. The procedure departs from a weakly feasible VRPMB solution. Weakly feasible refers to a solution that does not violate the maximum route length, nor does the total load picked up or delivered exceed the vehicle’s capacity. Strong feasibility is attained when the load constraint is respected at every arc. First the weakly feasible solution is improved by local search procedures. Then this improved solution is made strongly feasible and improved retaining strong feasibility.

Table 5 Metaheuristics for the VRPMB

<table>
<thead>
<tr>
<th>Reference</th>
<th>Obj.</th>
<th>Con.</th>
<th>Algorithm</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>The multi vehicle case</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontoravdis and Bard (1995)</td>
<td>min. NV, min. RC</td>
<td>TW</td>
<td>greedy randomized adaptive search</td>
<td>KB95</td>
</tr>
<tr>
<td>Hasama et al. (1998)</td>
<td>min. NV, min. RC</td>
<td>TW</td>
<td>simulated annealing</td>
<td>TPS96</td>
</tr>
<tr>
<td>Wade and Salhi (2004)</td>
<td>min. RC</td>
<td>-</td>
<td>ant system</td>
<td>G189</td>
</tr>
<tr>
<td>Crispim and Brandão (2005)</td>
<td>min. NV, min. RC</td>
<td>TW</td>
<td>hybrid algorithm</td>
<td>SN99a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(tabu search, variable neighborhood descent)</td>
<td></td>
</tr>
<tr>
<td>* Zhong and Cole (2005)</td>
<td>see Table 2</td>
<td></td>
<td></td>
<td>KB95</td>
</tr>
<tr>
<td>Reimann and Ulrich (2006)</td>
<td>min. NV, min. RC</td>
<td>TW</td>
<td>insertion based ant system</td>
<td>GDDS95</td>
</tr>
<tr>
<td>* Ropke and Pisinger (2006)</td>
<td>see Table 2</td>
<td></td>
<td></td>
<td>SD: relaxed GJ89; SD, MD: SN99a; TW: KB95</td>
</tr>
</tbody>
</table>

Con. = Constraints, MD = Multi Depot, NV = Number of Vehicles, Obj. = Objective(s), RC = Routing Cost, RL = Route Length, SD = Single Depot, TW = Time Windows. The respective benchmark instances are described in Section 4. Entries marked by an asterisk (*) are described in further detail in the text.
Most recent improved results for these instances have been reported in (Ropke and Pisinger, 2006), outperforming earlier results by Nagy and Salhi (2005).

3.2.5 Related work Mosheiov (1995) discusses an extension of the VRPMB, namely the pickup and delivery location problem. All customers either demand transportation to or from the depot as in the classical VRPMB, however, the location of the depot is yet to be determined. Thus, the objective of the problem becomes the determination of the best location of the central depot. Mosheiov (1995) discusses two heuristic solution methods, one based on the heuristic proposed by Mosheiov (1994), and one based on a ranking of the vertices w.r.t. their probability of demand and their respective distance from all the other vertices.

Irnich (2000) considers a variation of the traditional VRPMB. There is a central hub where all requests have to be picked up or delivered to. In addition, a number of depots are considered and every vehicle has to end at the same depot where it is started. In contrast to the traditional VRPMB the loading and unloading point of the goods transported is not the same as the vehicle’s depot. Irnich (2000) solves this problem by a three step heuristic algorithm that consists (1) in the model generation phase, (2) in solving the set covering model and (3) in a postprocessing phase. Instances with up to 130 pickups and 112 deliveries were solved.

Delivery systems of overnight carriers are investigated in Hall (1996). On the morning delivery tours, early pickups might equally occur, resulting in VRPMB problem situations.

3.3 Divisible delivery and pickup (TSPDDP, VRPDDP)

This problem class is a mixture of the previously described VRPMB class and the VRPSDP subject to review in the next section. In contrast to the VRPMB every customer can be associated with a pickup and a delivery quantity. However, these customers do not have to be visited exactly once but they may also be visited twice, once for pickup and once for delivery service. Only little research has been explicitly dedicated to this problem class. However, all the solution methods designed for the VRPMB can be applied to VRPDDP instances if every customer demanding pickup and delivery service is modeled as two separate customers.

Salhi and Nagy (1999) apply their cluster insertion algorithm to VRPSDP instances resulting in solutions that do not always comply with the restriction that every customer has to be visited exactly once. Thus, they actually solve a VRPDDP.

Halskau et al. (2001) on the other hand explicitly relax the VRPSDP to the VRPDDP in order to create so called lasso solutions, i.e. customers along the spoke can be visited twice (first for delivery and second for pickup service). Customers along the loop are only visited once.
Hoff and Løkketangen (2006) also study lasso solutions but restricted to the single vehicle case. They develop a tabu search based on a 2-opt arc neighborhood. Solutions to the test instances of Gendreau et al. (1999) are reported.

An in depth study of different solution shapes for TSPDDP is conducted in (Gribkovskaia et al., 2007). They do not only consider lasso solutions but also Hamiltonian and double-path solutions by introducing the concept of general solutions, motivated by the fact that better solutions can be identified when relaxing the VRPSDP to the VRPDDP. The proposed solution methods are classical construction and improvement heuristics as well as a tabu search algorithm. The different heuristics are tested on instances containing up to 100 customers. The results show that the best solutions obtained are often non-Hamiltonian and may contain up to two customers that are visited twice.

3.4 Simultaneous delivery and pickup (TSPSDP, VRPSDP)

The difference between VRPDDP and VRPSDP refers to customers demanding pickup and delivery service. In case of the VRPSDP these customers have to be visited exactly once for both services. The VRPMB is a special case of the VRPSDP where every customer only demands a pickup or a delivery but not both. This problem class was first defined in (Min, 1989).

3.4.1 Exact methods The only exact algorithm for the VRPSDP with TW is presented in (Angelelli and Mansini, 2002). Based on a set covering formulation of the master problem a branch and price approach is designed. As pricing problem the elementary shortest path problem with TW and capacity constraints is used. In order to obtain integer solutions a branch and bound procedure is employed.

Angelelli and Mansini were the first to tackle the extension of the VRPSDP with TW. The largest instance solved to optimality contains 20 customers.

Dell’Amico et al. (2006) also propose a branch and price algorithm to solve the VRPSPD but without TW. They use a hierarchy based on five pricing procedures - four heuristics and one exact method. The exact procedure uses bidirectional labeling algorithms (Salani, 2005). An iterative approach based on state-space relaxation is applied in order to generate elementary paths. A 40 customer instance is the largest instance that could be solved to optimality.

3.4.2 Heuristics Different heuristic methods have been applied to the VRPSDP. In Table 6 an overview of the developed procedures is given. References marked by an asterisk, that have not yet been depicted in previous sections, are described in further detail below.

A heuristic algorithm for the single vehicle case departing from a heuristically constructed TSP cycle is proposed in (Gendreau et al., 1999). Based
on the TSP cycle an exact cycle algorithm is run and its result is improved by using shortcuts and local search arc exchanges. This algorithm is compared to a tabu search algorithm which will be discussed in the section on metaheuristic approaches. Gendreau et al. (1999) also apply the cheapest feasible insertion heuristic, the pickup and delivery along the optimal tour algorithm (Mosheiov, 1994) and the MST algorithm (Anily and Mosheiov, 1994) to their test instances. These three methods were originally proposed for the TSPMP, however, they are also applicable to the TSPSDP without additional adaptations.

Alshamrani et al. (2007) present a composite algorithm for the stochastic, periodic TSPSDP that first constructs a feasible traveling salesman tour and, in a second step, improves this tour using the Or-opt operator w.r.t. penalties for backhaul quantities left at stop locations while demand figures are only known probabilistically.

The multi vehicle case is considered in (Dethloff, 2001). He proposes an extension of the cheapest insertion heuristic that does not only rely on the measure of travel distance but also on residual capacity and radial

<table>
<thead>
<tr>
<th>Reference</th>
<th>Obj.</th>
<th>Con./Type Algorithm</th>
<th>Benchmark/Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>The single vehicle case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Gendreau et al. (1999)</td>
<td>min. RC</td>
<td>-</td>
<td>2 heuristics. (1) construct TSP cycle, apply exact cycle algorithm, use shortcuts, local search improvements. (2) see Table 7</td>
</tr>
<tr>
<td>* Alshamrani et al. (2007)</td>
<td>min. RC, periodic, sochastic PEN</td>
<td>construction-improvement (Or-opt)</td>
<td>-</td>
</tr>
</tbody>
</table>

| **The multi vehicle case** |
Min (1989)	min. RC	-	3 phase cluster first route second algorithm. (1) clustering (2) truck assignment (3) routing	Min89
Halse (1992)	min. RC	-	cluster first route second. (1) cluster by solution of assignment problem (2) routing plus improvement phase	Min89, up to 100 customers
* Dethloff (2001)	min. RC	-	cheapest insertion based algorithm	Min89, SN99b, Det01
* Nagy and Salhi (2005)	see Table 5		SD, MD: SN99b	

Con. = Constraints, MD = Multi depot, Obj. = Objective(s), PEN = Penalty for backhaul quantities not picked up, RC = Routing Cost, RL = Route Length, SD = Single Depot. The respective benchmark instances are described in Section 4. Entries marked by an asterisk (*) are described in further detail in the text.
Table 7 Metaheuristics for the VRPSDP

<table>
<thead>
<tr>
<th>Reference</th>
<th>Obj.</th>
<th>Con.</th>
<th>Algorithm</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>The single vehicle case</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Gendreau et al. (1999)</td>
<td>min. RC</td>
<td>-</td>
<td>tabu search; see also Table 6</td>
<td>GLV99</td>
</tr>
<tr>
<td>The multi vehicle case</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crispim and Brandão (2005)</td>
<td>see Table 5</td>
<td></td>
<td></td>
<td>SN99b</td>
</tr>
<tr>
<td>Chen and Wu (2006)</td>
<td>min. RC</td>
<td>-</td>
<td>insertion based procedure, record-to-record heur.(^1), tabu list</td>
<td>SN99b</td>
</tr>
<tr>
<td>* Ropke and Pisinger (2006)</td>
<td>see Table 2</td>
<td></td>
<td></td>
<td>Min89, SN99b, Det01</td>
</tr>
<tr>
<td>* Bianchessi and Righini (2007)</td>
<td>min. RC</td>
<td>-</td>
<td>different local search heur., tabu search</td>
<td>Det01</td>
</tr>
</tbody>
</table>

Con. = Constraints, heur. = heuristic(s), Obj. = Objective(s), RC = Routing Cost, RL = Route Length. The respective benchmark instances are described in Section 4. Entries marked by an asterisk (*) are described in further detail in the text.

\(^1\) compare (Dueck, 1993)

surcharge. The developed method was also used to solve the VRPMB in (Dethloff, 2002).

3.4.3 Metaheuristics Metaheuristic solution methods have also been applied to the VRPSDP, see Table 7 for an overview.

The first metaheuristic for the VRPSDP was a tabu search algorithm using a 2-exchange neighborhood proposed in (Gendreau et al., 1999) for the single vehicle case. Two different versions were implemented, one departing from the heuristic based on a traveling salesman cycle proposed in the same paper and one using four different departure solutions constructed by the cycle heuristic, the MST heuristic (Anily and Mosheiov, 1994) the pickup and delivery along the optimal tour heuristic, and the cheapest feasible insertion heuristic (Mosheiov, 1994).

Tang Montané and Galvão (2006) discuss a tabu search algorithm for the multi vehicle case. They combine the four construction methods used in (Gendreau et al., 1999) with a tour partitioning heuristic and an adapted sweep algorithm to generate an initial solution, resulting in eight different methods. Four different neighborhoods were implemented, a relocation, an interchange, a crossover and a combined neighborhood. At every iteration the best feasible non-tabu solution of the neighborhood is chosen. The 2-opt operator is used to improve the solution found.

Bianchessi and Righini (2007) compare a tabu search algorithm to different construction and improvement heuristics. A combination of different arc-exchange-based (cross involving two or three routes), node-exchange-based (relocate, exchange) neighborhoods are tested. The tabu search algorithm
uses two tabu lists (one for arc-based and one for node-based neighborhoods).

3.4.4 Summary Summarizing this section on VRPSDP, again the same trend as in case of the VRPMB can be observed. Early research favored simple heuristic algorithms whereas recent algorithms mostly belong to the field of metaheuristic solution procedures. The largest VRPSDP instance solved to optimality comprises 40 requests (Dell’Amico et al., 2006), however no standard benchmark instance is considered. Two data sets have been most often referred to. These are those of (Salhi and Nagy, 1999) (SN99b) and (Dethloff, 2001) (Det01). The best pooled results for the SN99b instances hold (Ropke and Pisinger, 2006) and (Nagy and Salhi, 2005). Tang Montané and Galvão (2006) also report improved solutions, however, not the whole set is considered. Consequently, a direct comparison to the other two is impossible. For the Det01 data set Ropke and Pisinger (2006), Tang Montané and Galvão (2006) and Bianchessi and Righini (2007) report new best results of similar quality, however in different pooled formed and only comparing themselves to the results of (Dethloff, 2001). Whatever method produces the best results, all of them are metaheuristics clearly indicating that these more sophisticated methods outperform straightforward heuristic procedures.

4 Benchmark Instances for VRPB

In order to provide the interested researcher with some information on available benchmark instances we decided to dedicate this section to a brief description of the various instances generated for the different VRPB types. Table 8 provides the following information in chronological order w.r.t. the literature reference. In the first column the literature reference is given. Column two states the VRPB type the instances were designed for. Columns three and four give the size of the smallest and the largest instance, in terms of number of customers, and the number of instances provided, respectively. In column five a brief description of the instances can be found. Column six gives the abbreviations used in this survey.

In case of the VRPCB subclass the benchmark data sets most often used in the literature are GJ89 and TV96. The most recent new best results have been presented by Brandão (2006) and Ropke and Pisinger (2006), two metaheuristic approaches, outperforming earlier results by (Osman and Wassan, 2002).

W.r.t. the VRPMB and the VRPSDP the single depot instances SN99a and SN99b, respectively, have been most often solved in the literature. The most recent new best results for these two data sets were presented by Ropke and Pisinger (2006), and by Nagy and Salhi (2005) for the second half of the SN99b data set. Also Tang Montané and Galvão (2006) reported good results for parts of the SN99b data set.
Table 8 Benchmark Instances for VRPB

<table>
<thead>
<tr>
<th>Literature Ref.</th>
<th>Type</th>
<th>Cust.</th>
<th>#</th>
<th>Characteristics</th>
<th>Abbr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golden et al. (1985)</td>
<td>VRPMB</td>
<td>55</td>
<td>1</td>
<td>based on instance 8 of (Christofides and Eilon, 1969), 10% bh.</td>
<td>Gal.85</td>
</tr>
<tr>
<td>Min (1989)</td>
<td>VPRSBD</td>
<td>22</td>
<td>1</td>
<td>real life instance</td>
<td>Min89</td>
</tr>
<tr>
<td>Goetschalckx and Jacobs-Blecha (1989)</td>
<td>VRPCB</td>
<td>25-150</td>
<td>62</td>
<td>25, 50 and 100% of the linehaul customers are bh.</td>
<td>GJS89</td>
</tr>
<tr>
<td>Gélinas et al. (1995)</td>
<td>VRPCB</td>
<td>25-100</td>
<td>45</td>
<td>TW, based on the first five problems proposed by Solomon (1987) for the VRPTW, 10, 30 50% bh.</td>
<td>GDDS95</td>
</tr>
<tr>
<td>Kontoravdis and Bard (1995)</td>
<td>VRPMB</td>
<td>100</td>
<td>27</td>
<td>based on the sets R2, C2 and RC2 of (Solomon, 1987), (C^k = 250, 50% bh.)</td>
<td>KB95</td>
</tr>
<tr>
<td>Gendreau et al. (1996a)</td>
<td>TSPCB</td>
<td>100-1000</td>
<td>750</td>
<td>randomly generated points in the square ([0, 100]), uniformly distributed, 10-50% bh.</td>
<td>GHL96</td>
</tr>
<tr>
<td>Toth and Vigo (1996)</td>
<td>VRPCB</td>
<td>21-100</td>
<td>33</td>
<td>based on VRP instances available at the TSPLIB library, 50, 66 and 80% bh.</td>
<td>TV96</td>
</tr>
<tr>
<td>Thangiah et al. (1996)</td>
<td>VRPCB</td>
<td>250-500</td>
<td>24</td>
<td>TW, based on the sets R1 and RC1 of (Solomon, 1987), 10, 30 and 50% converted into bh.</td>
<td>TPS96</td>
</tr>
<tr>
<td>Toth and Vigo (1999)</td>
<td>VRPCB</td>
<td>24</td>
<td>33-70</td>
<td>asymmetric, adapted from the real world instances used by Fischetti et al. (1994)</td>
<td>TV99</td>
</tr>
<tr>
<td>Salhi and Nagy (1999)</td>
<td>VRPMB</td>
<td>20-249</td>
<td>SD:42</td>
<td>based on SD instances of (Christofides et al., 1979) and MD instances of (Gillett and Johnson, 1976), adapted by defining 10, 25 and 50% of the customers as bh.</td>
<td>SN99a</td>
</tr>
<tr>
<td></td>
<td>VPRSBD</td>
<td>20-249</td>
<td>MD:33</td>
<td>same problems, adapted by splitting every customer’s demand into a demand and a supply part</td>
<td>SN99b</td>
</tr>
<tr>
<td>Gendreau et al. (1999)</td>
<td>VPRSBD</td>
<td>6-261</td>
<td>1308</td>
<td>partly based on VRP instances from the literature, partly randomly generated</td>
<td>GLV99</td>
</tr>
<tr>
<td>Dethloff (2001)</td>
<td>VPRSBD</td>
<td>50</td>
<td>40</td>
<td>randomly generated, 2 geographical scenarios: (1) uniformly distributed customer locations over the interval ([0, 100]), (2) more urban configuration; the pickup amount has at least half the size of the delivery amount</td>
<td>Det01</td>
</tr>
</tbody>
</table>

\# = number of instances, Abbr. = abbreviation used, bh. = backhaul customers, Cust. = number of customers per instance, MD = Multi Depot, SD = Single Depot

5 Conclusion

Usually it is rather difficult to classify or even judge different heuristic and metaheuristic methods. However, if needed, according to Cordeau et al.
(2004), a four dimensional evaluation scheme can be applied. The four dimensions are accuracy, speed, simplicity and flexibility. Traditionally heuristics run faster than metaheuristic methods, whereas metaheuristic methods usually outperform simple heuristics w.r.t. solution quality. Leaving all exact approaches aside we thus come to the following conclusion. In terms of accuracy as well as flexibility the adaptive large neighborhood search of (Ropke and Pisinger, 2006) is the best. It is flexible since it can be applied to several versions of the VRPB and it is accurate since it provides new best solutions for different benchmark instances. In terms of simplicity and speed only a heuristic algorithm can be selected. Recent heuristic algorithms involve those of Nagy and Salhi (2005) and Dethloff (2001, 2002).

Concluding, at this very moment the presented methods are state-of-the-art in the field of VRPB. In our opinion, future research will be directed into several directions. First, researchers will attempt to adjust the simplified problems studied to real life problem situations, referring to the incorporation of additional constraints, larger instances, etc. Second, the incorporation of the effects of dynamism will be subject to future investigations. And last but not least, knowledge about the future in terms of distributions of future demand and supply and the stochastics involved will lead to additional research domains.

We hope that this survey will serve as a basis for future research in the area of vehicle routing involving pickup and delivery.

Acknowledgements

This work was supported by the Austrian Science Fund (FWF) under grant #L286-N04. We thank the researchers working in the field of transportation logistics for their various contributions. Special thanks go to Michel Gendreau and Jacques Desrosiers for their kind support as well as to two anonymous referees for their valuable comments.

References

Clarke G, Wright JW (1964) Scheduling of vehicles from a central depot to a
center number of delivery points. Oper Res 12:568–581
Res 54:573–586
SIAM, Philadelphia, PA, SIAM Monographs on Discrete Mathematics and Ap-
lications, vol. 9, 175–193
Coslovich L, Pesenti R, Ukovich W (2006) Minimizing fleet operating costs for a
container transportation company. Eur J Oper Res 171:776–786
Crispim J, Brandão J (2005) Metaheuristics applied to mixed and simultaneous
1302
Crispim J, Brandão J (2001) Reactive tabu search and variable neighbourhood
descent applied to the vehicle routing problem with backhauls. In: MIC 2001
4th Metaheuristic International Conference, Porto, Portugal, July 16-20, 2001
Currie RH, Salhi S (2003) Exact and heuristic methods for a full-load, multi-
terminal, vehicle scheduling problem with backhauling and time windows. J
Oper Res Soc 54:390–400
vehicle scheduling problem with backhauling and time windows. J Math Model
Algorithm 3:225–243
Deif I, Bodin LD (1984) Extensions of the Clarke and Wright algorithm for solving
the vehicle routing problem with backhauling. In: Proceedings of the Babson
College Conference of Software Uses in Transportation and Logistics Manage-
ment, Babson Park, MA. 75–96
hicle routing problem with simultaneous distribution and collection. Transport
Sci 40:235–247
Derigs U, Metz A (1992) A matching-based approach for solving a delivery/pick-
up VRP with time constraints. OR-Spektrum 14:91–106
A unified framework for deterministic time constrained vehicle routing and crew
scheduling problems. In: Crainic T, Laporte G (eds.) Fleet Management and
in GERAD 25th Anniversary. Springer
with simultaneous delivery and pick-up. OR Spektrum 23:79–96
Dethloff J (2002) Relation between vehicle routing problems: An insertion heuris-
tic for the vehicle routing problem with simultaneous delivery and pick-up ap-
Doerner K, Hartl RF, Reimann M (2001) Ants solve time constrained pickup and
2000. 395–400
A survey on pickup and delivery problems

