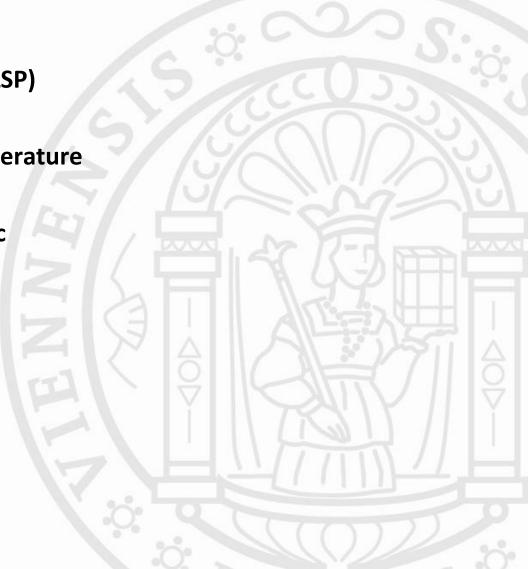


Stefan Helber and Florian Sahling


A Fix-and-Optimize Approach for the Multi-Level Capacitated Lot Sizing Problem

Summary by Christian Almeder

Outline

- Problem definition (MLCLSP)
- Solution approaches in literature
- Fix-and-optimize heuristic
- Results
- Conclusions

Problem Definition (MLCLSP)

- Extension of the classical CLSP
- Multi-stage structure

Considering raw materials, subassemblies, final items and their relation to each other

Difference to CLSP: additional term in the inventory balance

constraint (internal demand)

$$Y_{k,t} = Y_{k,t-1} + Q_{k,t-z_k} - \sum_{i \in N_t} a_{k,i} \cdot Q - d_{k,i}$$

- Production lead time z_k is used to consider delayed availability
- Overtime is used to relax the capacity constraint
- Problem is NP-hard -> no algorithm in polynomial time possible

Problem Definition (MLCLSP)

- Important problem for the material requirements planning (MRP)
- Today's enterprise resource planning (ERP) systems often ignore capacities
- Fast solution methods are necessary (short-term planning)
- Solutions have to be disaggregated into a detailed production schedule

Solution Approaches in Literature

• Mathematical programming approaches

Solution approaches based on solving the mixed-integer model (or parts of it)

Valid inequalities

• Lagrangean relaxation and decomposition

Relaxing the capacity and inventory balance constraints

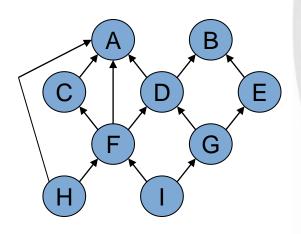
Decompose the problem into uncapacitated single-item problems

• Local search and metaheuristics

Tabu Search, Genetic Algorithm, Ant Colony Optimization, ...

Fix-and-Optimize Heuristic

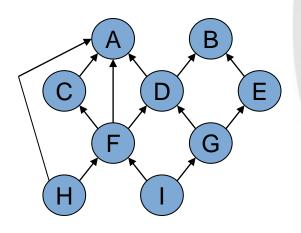
- Idea
 - MIP formulation hard to solve because of many binary variables
 - Fix most of the binary variables (either to 0 or to 1)
 - Optimize the remaining free binary variables.
 - Iteratively change the fixed and free variables and optimize again


• Necessary

- Initial (starting) solution: Allow production for every item in every period (all γ_{kt} =1)
- Strategies to fix and free variables

Fix-and-Optimize Heuristic

- Product oriented decomposition
- Resource-oriented decomposition
- Process-oriented decomposition

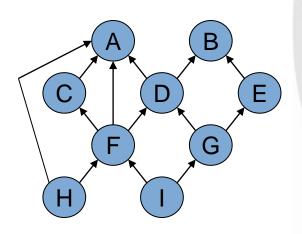

		/		1	_							
			Periods									
	10	1	2	3	4	5	6	7				
	A (M1)	0	1	1	0	1	1	0				
	B (M2)	0	4	0	1	1	0	1				
	С (М3)	1~	_1 ;	0	1	1-	0	1				
	D (M1)	1	0	1	1	0	1	1				
ltem	E (M3)	0	1	1	0	1	0	0				
	F (M2)	1	0	1	0	1	1	0				
	G (M2)	1	1	0	71	0	0	1				
	H (M1)	1	0	1	1	/1	0	0				
	I (M3)	1	1	0	0	1	0	1				

2

Fix-and-Optimize Heuristic

- Product oriented decomposition
- Resource-oriented decomposition
- Process-oriented decomposition

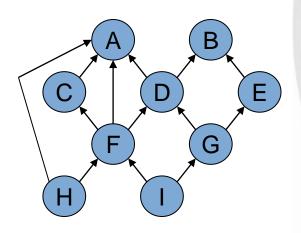
		<u> </u>		1.			1.1	1				
			Periods									
	10	1	2	3	4	5	6	7				
	A (M1)	0	1	1	0	1	1	0				
	B (M2)	0	1	0	1	1	0	1				
	C (M3)	1	_1 :	0	1	1-	0	1				
	D (M1)	?	?	?	?	?	?	?				
Item	E (M3)	0	1	1	0	1	0	0				
	F (M2)	1	0	1	0	1	1	0				
	G (M2)	1	1	0	7	0	0	1				
	H (M1)	1_	0	1	1	1	0	0				
	I (M3)	1	1	0	0	1	0	1				


2

- 402-

Fix-and-Optimize Heuristic

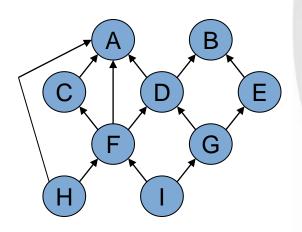
- Product oriented decomposition
- Resource-oriented decomposition
- Process-oriented decomposition


			Periods								
	10	1	2	3	4	5	6	7			
	A (M1)	?	?	?	?	1	1	0			
	B (M2)	0	1	0	1	1	0	1			
	C (M3)	1~	1	0	1	1	0	1			
	D (M1)	?	?	?	?	0	1	1			
ltem	E (M3)	0	1	1	0	1	0	0			
	F (M2)	1	0	1	0	1	1	0			
	G (M2)	1	1	0	71	0	0	1			
	H (M1)	?	?	?	?	/1	0	0			
	I (M3)	1	1	0	0	1	0	1			

0.0

Fix-and-Optimize Heuristic

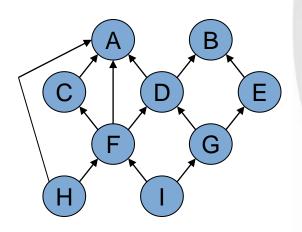
- Product oriented decomposition
- Resource-oriented decomposition
- Process-oriented decomposition



			Periods								
	10	1	2	3	4	5	6	7			
	A (M1)	0	1	?	?	?	?	0			
	B (M2)	0	1	0	Ť	5	0	ł			
	C (M3)	1~	Ť	0	7	1	0	1			
	D (M1)	1	0	?	?	?	?	1			
ltem	E (M3)	0	1	1	0	1	0	0			
	F (M2)	1	0	1	0	1	1	0			
	G (M2)	1	1	0	1	0	0	1			
	H (M1)	1	0	?	?	?	?	0			
	I (M3)	1	1	0	0	1	0	1			

Fix-and-Optimize Heuristic

- Product oriented decomposition
- Resource-oriented decomposition
- Process-oriented decomposition


			Periods								
	12	1	2	3	4	5	6	7			
	A (M1)	0	1	1	0	1	1	0			
	B (M2)	0	1	0	1	1	0	1			
	C (M3)	1~	1	0	1	1	0	1			
	D (M1)	?	?	?	?	0	1	1			
ltem	E (M3)	0	1	1	0	1	0	0			
	F (M2)	?	?	?	?	1	1	0			
	G (M2)	1	1	0	71	0	0	1			
	H (M1)	1	0	1	1	1	0	0			
	I (M3)	1	1	0	0	1	0	1			

00

Fix-and-Optimize Heuristic

- Product oriented decomposition
- Resource-oriented decomposition
- Process-oriented decomposition

			- Ja	P	erio	de		
	12	1	2	3	4	5	6	7
	A (M1)	0	1	1	0	1	1	0
	B (M2)	0	1	0	1	1	0	1
	C (M3)	1~	1	0	1	1	0	1
	D (M1)	1	0	1	1	?	?	?
ltem	E (M3)	0	1	1	0	1	0	0
	F (M2)	1	0	1	0	?	?	?
	G (M2)	1	1	0	71	0	0	1
	H (M1)	1_	0	1	1	1	0	0
	I (M3)	1	1	0	0	1	0	1

0.0

Fix-and-Optimize Heuristic

• Variant 1:

Product-oriented decomposition only

• Variant 2:

Product-oriented decomposition Resource-oriented decomposition

• Variant 3:

Product-oriented decomposition Process-oriented decomposition

• Variant 4:

Product-oriented decomposition Resource-oriented decomposition Process-oriented decomposition

Results

- 5 classes of test instances (small, medium, large)
- Comparison with Tempelmeier and Derstroff (1996), Stadtler (2003), and truncated branch-and-bound (CPLEX)
- Tests with $(z_k=1)$ and without $(z_k=0)$ lead time
- Variant 4 gives the best solutions with the longest run time
- Variant 2 gives slightly better results than variant 3 in shorter time
- Variant 1 is for medium and large instances worse than Tempelmeier and Derstroff (1996)
- Proposed heuristic is faster than that by Stadtler (2003)

Conclusions

- Method seems easy and fast
- Solution quality is good

- Criticism
 - Method relays heavily on the performance of a commercial software product (CPLEX)
 - Solution quality reported by Stadtler (2003) are better than in this paper. Where comes the gap from?
 - Only comparison with two other methods (numerous papers on solution methods are cited)

What kind of information should be in a seminar work?

- complete model formulation
- more information on the papers Tempelmeier and Derstroff (1996) and Stadtler (2003)
- Other papers dealing with a similar topic

Sahling, F., Buschkühl, L., Tempelmeier, H., Helber, S., Solving a multi-level capacitated lot sizing problem with multi-period setup carry-over via a fixand-optimize heuristic. *Computers & Operations Research* 36, 2009, 2546-2553.

- more detailed explanation of the algorithm
- deeper analysis of the results (comparison with other papers, e.g.: Stadtler, 2003; Pitakaso et al., 2006)