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0. Introduction 12 

Layout decisions are one of the key facts determining the long-run efficiency of operations. 
Layouts have numerous strategic implications because they establish an organization´s 
competitive priorities in regard to capacity, processes, flexibility, and cost. They are associated 
with the tactical decision horizon and are dedicated to the concretion of strategic decisions like, 
e.g., facility location. Configured production systems are input for the operational level, where 
the goal is to run the given system as efficiently a possible.  

An efficient layout facilitates and reduces costs of material flow, people, and information 
between areas. To achieve these objectives, a variety of configuration designs have been 
developed. The most relevant ones, in the context of this course, are: 

1. Fixed-position layout: addresses the layout requirements of large, bulky projects 

2. Job shop production (Process-oriented layout): deals with low-volume, high-variety 
production 

3. Cellular manufacturing systems (work cell layout): arranges machinery and equipment 
to focus on production of a single product or group of related products 

4. Flow shop production (Product-oriented layout): seeks the best personnel and machine 
utilization in repetitive or continuous production.  

As a matter of fact layouts 1 and 2 are often described as centralized, and layouts 3 and 4 as 
decentralized manufacturing systems.  

Example2: To illustrate the differences in fixed-position layout, job shop production, cellular 
manufacturing systems, and flow shop production consider a situation in which four parts (A, B, 
C, D) are to be produced and assembled into a single product. The processing sequence for part 
A is saw, turn, mill, and drill; for part B it is saw, mill, drill, and paint; for part C the processing 
sequence is grind, mill, drill, and paint; and for part D the sequence is weld, grind, turn, and drill. 
All parts go to a central assembly department. The following table contains the proportional 
capacity requirement of each part on each machine relative to the capacity availability of the 
machine in one time period.  

  Equipment requirements 
Part Weld Grind Saw Turn Mill Drill Paint 

A - - 0.5 0.5 0.3 0.2 - 
B - - 0.4 - 0.5 0.3 0.2 
C - 0.4 - - 0.3 0.5 0.3 
D 0.3 0.5 - 0.3 - 0.2 - 

                                                 

1 Heizer, J., Render, B., Operations Management, Prentice Hall, 2006, Chapter 9 

2 Francis, R., McGinnis, L., White, J., Facility Layout and Location: An Analytical Approach, Prentice Hall, 1992 
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Based on the given capacity requirements we know that the minimum equipment needed is: 1 
weld, 1 grind, 1 saw, 1 turning machine, 2 mills (0.3+0.5+0.3 > 1), 2 drills, and 1 painting 
machine. 

According to the layout concepts listed above the following configurations for the example 
problem could be realized (this is not a complete list of all possible configurations but an 
illustrative selection of possible realizations). 

1. In case of a fixed-position layout it may be sufficient to have the minimum machine 
equipment (see above). But depending on how production is scheduled it could also be 
necessary to install more machines in order to come up with the needed production 
output. 

 

 

 

 

 

 

 

 

 

 

 

2. By applying a job shop production system we are able to reach the minimum machine 
equipment. Clearly, depending on production scheduling it may become necessary to 
install more machines than the minimum equipment. 

 

                 

Figure 0-1: Fixed-position layout 

Figure 0-2: Job shop production 
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3. Figure 0-3 illustrates a cellular manufacturing system for the example problem. For the 
chosen configuration (2 work cells) it is not possible to realize the minimum machine 
equipment. We need an additional turning machine and an additional painter.  

 

Figure 0-3: Cellular manufacturing system 

 

 

4. Figure 0-4 shows a flow shop production system for the example problem. In this case we 
need 5 machines additional to the minimum equipment (1 grind, 1 saw, 1 turning 
machine, 1 mill, and 1 paint): 

 

Figure 0-4: Flow shop production 

 

 

The decision to use a fixed-position layout is generally dictated by a particular characteristic of 
the workpiece. It layout is used when the product is too large or cumbersome to be moved 
through the various processing steps. Consequently, the processes are brought to the product 
rather than taking the product to the processes (e.g. aircraft industry,..). 
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This concept is realized by locating workstations or production centres around the product in the 
appropriate processing sequence. Considerable logistics are involved in ensuring that the right 
processes are brought to the product at the right times and are located in the right places.  

Advantages: 

• Material movement is reduced. 

• Promotes job enlargement by allowing individuals or teams to perform the “whole job”. 

• Highly flexible; can accommodate changes in product design, product mix, and 
production volume. 

• Independence of production centres allows scheduling to achieve minimum total 
production time. 

Limitations: 

• Increased movement of personnel and equipment. 

• Equipment duplication may occur. 

• Higher skill requirements for personnel. 

• General supervision required. 

• Cumbersome and costly positioning of material and machinery. 

• Low equipment utilization. 

 

However, the decision to use either a job shop, work cell, or flow shop layout generally depends 
on the volumes of production and variety of products being manufactured. Figure 0-5 illustrates a 
volume-variety chart3.  

                                                 

3 Francis, R., McGinnis, L., White, J., Facility Layout and Location: An Analytical Approach, Prentice Hall, 1992 
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Figure 0-5: Volume-variety chart 

 

Flow shop production is appropriate for high-volume, low variety conditions. Working cell 
manufacturing systems are usually used for “in between” conditions, and job shop production is 
applied for low-volume high-variety settings. In fact, many real world layouts tend to be a 
combination of all three of them (hybrid layout). The volume-variety mix among products can be 
such that a few products are manufactured using flow shop production, others using job shop 
production, and the remainder using working cell manufacturing. Similarly, it may be useful to 
appropriate to use either job shop production or working cells for the production of individual 
components and to use a flow shop system for the assembly of the components.  

In the following we are going to discuss job shop production, cellular manufacturing systems and 
flow shop production in more detail. Occurring optimization problems and dedicated solution 
methods will be discussed as well. 

 

1. Methodological Basics 

Complexity 

Almost all optimization problems  occuring in production and logistics can be solved either 
exactly or by applying heuristic methods. The selection of a solution method may depend on: 
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● Software availability 

● Cost-benefit 

● Problem complexity 

Even if we know adequate (time consuming) exact methods we are going to apply heuristic 
methods if we do not have adequate software available or costs (installation, personnel 
instruction, etc.) exceed the expected benefit.  

On the other hand we know a number of combinatorial problems, which are classified to be „NP-
hard“, which indicates the assumption that the computational effort for solving the problem will 
not increase polynomial with the problem dimension. In case of real-world applications with the 
according problem size we face unacceptable computational times, even for high performance 
IT-systems, regularly.  

LP-Problems (average case) are to be solved with polynomial effort, since the number of 
simplex-iterations increases linearly with the number of constraints (and each iteration causes 
quadratic effort). 

LP-Problems with integer variables usually are solved by applying a  Branch and Bound (B&B) 
method, where a common LP-model is solved in each iteration. Here the number of iterations 
increases exponentially with the number of integer variables. Thus, these problems cannot be 
solved with polynomial effort.  

For some problem classes (e.g. transportation problems, (linear) assignment) due to their 
problem structure integer/binary property of the decision variables is guaranteed automatically 
leading to a low problem complexity.  

Some problems with integer/binary variables can (by using special exact methods) be solved with 
polynomial effort, anyway.  

Referring to heuristic methods we usually distinguish between: 

 

● Starting heuristics (quick generation of a feasible solution) 

● Improvement heuristics (start with a feasible solution and try to find a better one)  

● Combinations of starting and improvement heuristics 

We use “general purpose”-heuristics or metaheuristics (e.g. Simulated Annealing, Tabu Search 
or Genetic Algortihms) in order to leave local optima during improvement steps.   

Costs and distances 

The majority of problems being dealt with during this course will be solved based on costs and/or 
distances cij. In most cases costs are determined based on given technical parameters (machine 
setup,..) or distances (e.g. distance between object i and j). In the following we are going to 
introduce three common distances:  
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Euclidean distance: ( )d(x,y) = x - yi i
i=1

n
2∑  

(Straight line distance between two points x 
and y) 

 

x 

y 

 

 x2 

x1 
1 

1 

 

Manhattan distance:

 d(x,y) = x - yi i
i =1

n

∑   

(The distance between two points measured 
along axes at right angle) 

 

y 

x 

 

 x2 

x1 
1 

1 

 

Maximum distance: d(x, y) = max x - y
i=1,...,n

i i  

(Drilling plates, movement of cranes,…) 

 

x 
y1 

y2 y3 

 

 x2 

x1 
1 

1 

 

In most cases we know the distance between every couple of adjacent nodes (locations, 
customers,…). For determining the distance between any two nodes within the network, we have 
to solve a shortest path problem.  

Basics on Graph Theory 

A graph  consists of points known as nodes (vertices) which are connected with each other using 
lines (edges, arcs). 

 

Graph: 

 

 

A chain between nodes I and j is a sequence of edges connecting these two nodes. A path is a 
chain where the direction is clear (oriented); oriented edges are usually called arrows (or arcs). 

Chain from A to D:    
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A cycle is a chain that connects a node with itself, while no edge is traversed more than once.  

    

Cycle:  

 

 

A graph is connected if for each pair of nodes there exists a path connecting these two. 

A  tree is a connected graph without cycles. 

 

 

 

Tree: 

 

 

One of the theorems in graph theory indicates that a graph with n nodes is connected if it 
contains (n-1) nodes, but no cycles.  

 

No tree (due to cycle OAB): 

 

 

 

 

No tree (because not connected): 

        

 

 

The edge of graph is directed or is an arrow if an orientation is given (one way street). A directed 
graph contains only directed arcs. An undirected graph contains only undirected edges. A mixed 
graph contains both directed and undirected edges.  
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2. Job shop production 45 

 

The process-oriented layout can simultaneously handle a wide variety of products. It is typically 
the low-volume, high-variety strategy. Each product or product group undergoes a different 
sequence of operations. It is produced moving it from one department to another in the required 
sequence. Different products have different material flows. Thus, it is not efficient to arrange 
machines due to a product-oriented layout (flow shop system) but according to a process-oriented 
layout. 

A process-oriented layout consists of a collection of processing departments or cells. All 
machines involved in performing a particular process are grouped together in a machine shop 
(e.g. drill, weld,..). This concept is used when there are many low-volume, dissimilar products. It 
is also used in case of rapid changes in product mix or volume, as well as when conditions are 
such that neither product-oriented nor cellular manufacturing systems are useful. In comparison 
with cellular manufacturing systems this layout concept is characterized by high degrees of 
interdepartmental flow. A big advantage of this process-oriented layout is its flexibility in 
equipment and labor assignment. The breakdown of one machine need not halt an entire process; 
work can be transferred to other machines in the department.  

Advantages: 

• Better utilization of machines can result; consequently, fewer machines are required. 

• A high degree of flexibility exists relative to equipment or manpower allocation for 
specific tasks. 

• Comparatively low investment in machines is required. 

• The diversity of tasks offers a more interesting and satisfying occupation for the operator. 

• Specialized supervision is possible. 

Limitations: 

• Since longer flow lines are needed, material handling is more expensive. 

• Production planning and control systems are more involved than for other layouts. 

• Usually, total production time is longer than for other layouts. 

                                                 

4 Heizer, J., Render, B., Operations Management, Prentice Hall, 2006, Chapter 9 

5 Francis, R., McGinnis, L., White, J., Facility Layout and Location: An Analytical Approach, Prentice Hall, 1992 
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• Due to the fact that jobs have to queue before being processed in a machine job 
comparatively large amounts of in-process inventory occur. 

• Comparatively high degree of (machine) idle time because machines have to wait until 
the subsequent job is finished with its foregoing process. 

• Space and capital are tied up by work in process. 

• Because of the diversity of the jobs in specialized departments, higher grades of skill are 
required. 

Negative effects like idle or waiting times should be reduced by using dedicated production 
planning methods (on the operational level) and optimized machine shop arrangement on the 
tactical level. These tactical optimization problems referring to the optimal arrangement of 
machines in job shop production systems are known as “Assignment problems”. Although the 
typical problem in this context refers to the “Quadratic assignment problem” we first want to 
introduce the basic model: the “Linear assignment problem”. 

2.1. The Linear Assignment Problem 

The Linear Assignment Problem (LAP) is one of the most famous problems in linear 
programming and in combinatorial optimization. Apart from its application to intra-company 
location planning is can be used for a number of other planning problems.   

Given 

 n  machines (jobs, workers)  
 n  potential locations ( periods, projects) 
 cij ... cost of running machine i on position j. 

Any machine can be assigned to any location, incurring some cost that may vary depending on 
the machine-location assignment. It is required to use all locations by assigning exactly one 
machine to each location in such a way that the total costs of the assignments are minimized.  

The LP is formulated as follows.  

xij = 1, if machine i is assigned to location  j and 0 otherwise 

min
1 1

→∑ ∑=
= =

n

i
ij

n

j
ij xcC     s.t. ∑

=

n

j
ijx

1
= 1  for  i=1,...,n ...assign all machines 

∑
=

n

i
ijx

1
= 1  for  j=1,...,n ... 1 machine at each location 

0≥ijx    for  i=1,...,n  and  j=1,...,n 

Example 1: 3 machines, 4 locations and the following costs cij (machine 2 may not be assigned to 
location 2 - > cost ∞): 
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   location j =  
 i \ j 1 2 3 4 

maschine 1 13 10 12 11 

i = 2 15 ∞ 13 20 

 3 5 7 10 6 

Convert the given problem into a symmetric one by adding dummy-machines (-rows) or dummy-
locations (-columns) with cost 0: 

   location j =  
 i \ j 1 2 3 4 

maschine 1 13 10 12 11 

i = 2 15 ∞ 13 20 

 3 5 7 10 6 

dummy 4 0 0 0 0 

Locations being assigned to a dummy-machine remain empty. A machine being assigned to a 
dummy-location means that this machine is physically not allocated to any of the potential 
locations.  

2.1.1. Formulation as transportation problem 

Linear assignment problems can be interpreted as special case of a general transportation 
problem (TP). The latter is formulated as follows:  

 

m supplier with supply si, i = 1, … , m 
n consumer with demand dj, j = 1, … , n  
transportation costs cij  per unit transported from i to j  
decision variables xij indicate the amount of units transported from i to j 
 

Transportation cost min
1 1

→= ∑ ∑
= =

m

i
ij

n

j
ij xcK  

Supply ∑
=

=
n

j
iji xs

1
 i = 1, … , m 

Demand ∑
=

=
m

i
ijj xd

1
 j = 1, … , n. 

Nonnegativity 0≥ijx  i = 1, … , m; j = 1, … , n. 
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In order to derive the LAP from the TP we interpret machines as suppliers with a capacity of 1 
and each location as consumer with a demand of 1. Thus, each LAP can be solved as special case 
of transportation problems. It is known that due to the problem structure the optimal solution of a 
TP consists of (m+n-1) integer basis variables (even if we do not explicitly constrain integer 
property!). Clearly, this problem characteristic is valid for the LAP (as it has been derived as 
special case of the TP) as well. Since for the LAP we assume “supply” (machines)  = “demand” 
(locations) = 1 it is automatically guaranteed to obtain an optimal solution consisting of exactly n 
decision variables with value 1 while all other variables are 0 (although the formulation basically 
allows non-integer variables as well). Thus, we obtain a feasible solution for the LAP. Clearly, 
finding a feasible solution premises to have an equal number of machines and locations (m=n), 
which has already been mentioned above and is part of the mathematical LAP formulation as 
well.  

Example 1: as TP: 

i \ j 1 2 3 4 si 

1 13 10 12 11 1 

2 15 ∞ 13 20 1 

3 5 7 10 6 1 

4 0 0 0 0 1  

dj 1 1 1 1  

 

There is another problem characteristic which we are going to make use of in order to solve the 
LAP: it is always possible to reduce (or increase) all entries of any column or row by a certain 
value without changing the optimal solution (only the absolute costs change, the relation stays 
the same). We use this characteristic in order to generate the maximum amount of 0 entries in the 
cost matrix. By subtracting the smallest element of each column and row from all elements of 
this column/row we generate the maximum number of 0 entries while not having any influence 
on the optimal solution. Clearly, the absolute cost factors do change by this matrix reduction, but 
the relation of assignment costs for each machine/location definitely stays the same.  

Example 2: Cost reduction 

Cost matrix: 

 

  I II III 

A 1 8 15 

B 6 2 10 

C 7 9 3 

 



Hartl, Gansterer Layout and Design 17 

© Produktion und Logistik 

In this case the column minimum method finds the optimal solution. Machines A, B, and C are 
assigned to locations I, II, and III, respectively. We end up with total assignment costs of 6 
(=1+2+3).  

 Cost reduction:   

  I II III 

A 0 6 12 

B 5 0 7 

C 6 7 0 

 -1 -2 -3    
  

Again the column minimum method leads to the following assignment: A-I, B-II, C-III. This 
solution has total (reduced) assignment costs of 0 which implies that we found an optimal 
solution. By adding the sum of reduction values to the reduced assignment costs we again 
determine the total assignment costs: 0+1+2+3=6. 

Usually, especially when solving larger problems, it is necessary to apply some iterations of the 
Transport-Simplex-Method in order to find the optimal solution.  

However, for the LAP we know specialized methods leading to the optimal solution more 
quickly (cf. Fehler! Verweisquelle konnte nicht gefunden werden. referring to problem 
complexity). The most famous one will be presented in the following.   

2.1.2. Assignment Method (Kuhn’s Algorithm) 6 

Kuhn´s Algorithm involves adding/subtracting appropriate values to/from the given cost factors 
in order to find the lowest opportunity cost (foregone or not-obtained profits) for each 
assignment.  

“There are 3 steps to be followed: 

1. Subtract the smallest number in each column from every number in that column and then, 
from the resulting matrix, subtract the smallest number in each row from every number in 
that row. This step has the effect of reducing the numbers in the table until a series of 
zeros (at least 1 per column and row), meaning zero opportunity costs, appear.”5  

2. Draw the minimum number of vertical and horizontal straight lines necessary to cover all 
zeros in the table. This minimum number of lines equals the maximum number of zero 
cost assignments. Thus, if the number of lines equals the number of rows/columns in the 

                                                 

6 Heizer, J., Render, B., Operations Management, Prentice Hall, 2006, Chapter 15 
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table, then we can make an optimal assignment. If the number of lines is less than the 
number of rows or columns, we proceed to step 3. 

At this point we want to complete this step of the Assignment Method by specifying the 
procedure during step 2. In fact, finding the minimum number of vertical and horizontal 
lines necessary to cover all zeros in a matrix may be trivial in case of very small matrices, 
but should be solved systematically in case of larger ones. Thus, we want to introduce the 
following procedure in addition to step 2: 

We proceed systematically by choosing a column or row with as few as possible zero 
entries (preferably exactly one 0) and framing (shading) a 0 in this column or row. This 
leads to an interim assignment.  

Then we cross all remaining zeros in this column or row. Now in each column or row 
related to a framed 0 all other zeros are crossed which means that in this column or row 
no further assignments are possible. 

Now the next column or row with as few as possible non-marked (not crossed and not 
framed) zeros is chosen and so on. We stop as soon as we do not have zeros left to be 
framed. Now we have an arrangement of marked columns and rows including all zeros.  

If we are able to make an assignment with (reduced) costs of 0 for each machine we have 
found an optimal assignment otherwise we proceed as follows: 

2.1. Mark (for example „X“) all rows with no framed 0 

2.2. Mark all columns having at least 1 crossed 0 in a marked row 

2.3. Mark all rows having a framed 0 in a marked column 

2.4. Repeat 2.2 and 2.3 until there is no column or row left to be marked 

2.5. Mark each non-marked row and each marked column (shaded) with a continuous 
line -> all framed zeros are crossed now and we have the minimum number of 
crossed lines and rows needed to cover all zeros, i.e. the maximum number of 
zero cost assignments. If this number equals the number of rows or columns an 
optimal assignment is already found (in this case it would not have been necessary 
to perform the given subprocedure (2.1.-2.6.) because we should already have 
succeeded in finding a zero cost assignment as described above). 

3. “Substract the smallest number not covered by a line from every other uncovered 
number. Add the same number to any number(s) lying at the intersection of any two lines. 
Do not change the value of the numbers that are covered by only one line. Return to step 
2 and continue until an optimal assignment is possible.  

Some assignment problems entail maximizing profit, effectiveness, or payoff of an assignment of 
people to tasks or of jobs to machines. It is easy to obtain an equivalent minimization problem by 
converting every number in the matrix to an opportunity loss. To convert a maximization 
problem to an equivalent minimization problem, we subtract every number in the original matrix 
from the largest single number in that matrix. We then proceed to step 1. It turns out that 
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minimizing the opportunity loss produces the same assignment solution as the original 
maximization problem.”7 

Example 1: 

i \ j 1 2 3 4 si  

1 13 10 12 11 1 -10 

2 15 ∞ 13 20 1 -13 

3 5 7 10 6 1 -5 

4 0 0 0 0 1   

dj 1 1 1 1   

 

Step 1: Reduced costs 

i \ j 1 2 3 4 si 

1 3 0 2 1 1 

2 2 ∞ 0 7 1 

3 0 2 5 1 1 

4 0 0 0 0 1 

dj 1 1 1 1  

 

Step 2: Optimal solution? 

i \ j 1 2 3 4 si 

1 3 0 2 1 1 

2 2 ∞ 0 7 1 

3 0 2 5 1 1 

4 0 0 0 0 1 

dj 1 1 1 1  

 

In this case we see at first glance that an optimal solution is obtained with the following 
assignment: 1-2  2-3  3-1  4-4 (we have a zero cost assignment for each machine; the minimum 
number of lines needed to cover all zero elements would be equal to the number of 
rows/columns).  

Example 2:  

                                                 

7 Heizer, J., Render, B., Operations Management, Prentice Hall, 2006, Chapter 15 
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Step 1: Cost reduction 

17,5 15 9 5,5 12       -0,5 

16 16,5 10,5 5 10,5        

12 15,5 14,5 11 5,5 ⇒⇒⇒⇒       

4,5 8 14 17,5 13        

13 9,5 8,5 12 17,5        

-4,5 -8 -8,5 -5 -5,5        

      

      

⇒⇒⇒⇒      

      

      

 

Step 2: Optimal solution? 

12,5 6,5 0 0 6 

11,5 8,5 2 0 5 

7,5 7,5 6 6 0 

0 0 5,5 12,5 7,5 

8,5 1,5 0 7 12 

We are not able to make an assignment with (reduced) costs of 0 for each machine. Thus, we 
proceed with finding the minimum arrangement of marked columns and rows including all 0 
elements. 

 

12,5 6,5 0 0 6  

11,5 8,5 2 0 5  

7,5 7,5 6 6 0  

0 0 5,5 12,5 7,5  

8,5 1,5 0 7 12  
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12,5 6,5 0 0 6 X (1c) 

11,5 8,5 2 0 5 X (2c) 

7,5 7,5 6 6 0  

0 0 5,5 12,5 7,5  

8,5 1,5 0 7 12 X (1a) 

  X (1b) X (2b)   

 

Step 3: Generation of additional zeros. 

From all covered elements we choose the smallest. This element a is going to be subtracted from 
all not covered elements and is going to be added to all elements being covered twice.   

 

11 5 0 0 4,5  

10 7 2 0 3,5  

7,5 7,5 7,5 7,5 0  

0 0 7 14 7,5  

7 0 0 7 10,5 1 additional zero (assignment 5 → 2) 
increases the chance the find an assignment 
with total (reduced) costs of 0. 

 

Step 2: Optimal solution? 

Again we have to find out if we already are able to determine the optimal assignment. 

Iteration 2:  

11 5 0 0 4,5 

10 7 2 0 3,5 

7,5 7,5 7,5 7,5 0 

0 0 7 14 7,5 

7 0 0 7 10,5 

We have found the optimal solution with reduced assignment costs of 0.  

The total costs are calculated by summing up all reduction values (clearly, element “a” 
determined in step 3 is a reduction value as well): 

K = (4,5 + 8 + 8,5 + 5 + 5,5 + 0,5) + (1,5) = 33,5 
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2.2. The Quadratic Assignment Problem (QAP) 

The more common mathematical formulation for intra-company location problems (especially in 
case of job shop production) is the Quadratic Assignment Problem (QAP). For the QAP the cost 
of an assignment is determined by the distances and the material flows between all given entities. 
While, in case of LAP the costs for assigning a machine to a location do not depend on the 
location chosen for any other machine we now want to take distances of locations and material 
flow between entities into account as well. In fact, we are now going to minimize the total 
transportation costs occurring due to the chosen assignment whereas for the LAP we minimize 
isolated location-oriented costs. 

So called “Activity Relationship Charts” are useful graphical means of representing the 
desirability of locating pairs of machines/operations near to each other. The following letter 
codes have been suggested in literature for determining a “closeness” rating:8 

“A Absolutely necessary. Because two machines/operations use the same equipment or 
facilities, they must be located near each other. 

E Especially important. The facilities may for example require the same personnel or 
records. 

I Important. The activities may be located in sequence in the normal work flow. 

O Ordinary importance. It would be convenient to have the facilities near each other, but it 
is not essential.  

U Unimportant. It does not matter whether the facilities are located near each other or not. 

X Undesirable. Locating a wedding department near one that uses flammable liquids would 
be an example of this category.”7 

Example8: “Met Me, Inc., is a franchised chain of fast-food hamburger restaurants. A new 
restaurant is being located in a growing suburban community near Reston, Virginia. Each 
restaurant has the following departments: 

1. Cooking burgers 

2. Cooking fries 

3. Packing and storing burgers 

4. Drink dispensers 

5. Counter servers 

6. Drive-up server 

                                                 

8 Nahmias, S.: Production and Operations Analysis, 4th ed., McGraw-Hill, 2000, Chapter 10 
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The burgers are cooked on a large grill, and the fries are deep fried in hot oil. For safety 
reasons the company requires that these cooking areas not be located near each other. All 
hamburgers are individually wrapped after cooking and stored near the counter. The service 
counter can accommodate six servers, and the site has an area reserved for a drive-up window. 

An activity relationship chart for this facility appears in the following. In the chart, each pair of 
activities is given one of the letter designations A, E, I, O, U, or X. Once a final layout is 
determined, the proximity of the various departments can be compared to the closeness ratings 
in the chart. Figure 2-1  illustrates the activity relationship chart for Met me Inc .”8  

In the original conception of the QAP a number giving the reason for each closeness rating is 
needed as well. In case of closeness rating “X” a negative value would be used to indicate the 
undesirability of closeness for the according machines/operations.  
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2.2.1. QAP: Mathematical formulation 

For the model formulation we need both distances between the locations and material flow 
between organizational entities (OE):   

● n organizational entities (OE): all of them are of same size and can therefore be interchanged 
with each other.  

● n locations: each can be provided with exactly one OE. 

● thi ... intensity of material flow from OE h to OE i 

● djk ...distance between location j and location k (e.g. shortest distance of central points); 
distances are not necessarily symmetric. Transportation costs are proportional to amount 
transported and to distance.  
 

If OE h is allocated to location j and OE i to location k the transportation costs per unit from OE 
h to OE i are defined by djk. Similar to the LAP we define 

binary decision variable  




=
otherwise 0

location   toassigned is  OE if 1 jh
xhj  

Transportation costs per unit from OE h to OE i are ∑ ∑
= =

n

j

n

k
ikhjjk xxd

1 1
. 

The objective function minimizes total transportation costs between all OE:  

Figure 2-1: Activity relationship chart 
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min
1 1 1 1

→∑ ∑ ∑ ∑
= = = =

n

h

n

i

n

j

n

k
ikhjjkhi xxdt  

where we refer to the following constraints (similar to the LAP): 

1
1

=∑
=

n

j
hjx  for h = 1, ... , n  ... each OE h on exactly 1 location  j 

1
1

=∑
=

n

h
hjx  for j = 1, ... , n   ... each location  j gets exactly 1 OE h 

hjx = 0 or 1     ... binary decision variable 

While all constraints are still linear we now face a non-linear objective function. Due to the 
combination of integer property and non-linearity finding optimal solutions for larger problems is 
almost impossible (cf. Fehler! Verweisquelle konnte nicht gefunden werden.). Thus, heuristic 
methods are applied in most cases. As usual we distinguish between starting heuristics and  
improvement methods or a combination of both of them.  

Example: Calculation of costs of 3 OE (1 ,2 ,3) and 3 locations (A, B, C) 

 

 A 
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One possible solution would be 1 → A, 2 → B and 3 → C, i.e. Ax1 = 1, Bx2 = 1, Cx3 = 1 and all 

other thj = 0. All constraints are fulfilled.  
Total transportation cost: 0*0 + 1*1 + 2*1 + 1*2 + 0*0 + 1*2 + 3*3 + 1*1 + 0*0 = 17 

Obviously, this solution is not optimal since OE 1 and 3 (which have the highest intensity of 
material flow) are assigned to the locations with the highest distance between them (A and C).   

A better solution would for example be 1 → C, 2 → A and 3 → B, i.e. Cx1 = 1, Ax2 = 1, Bx3 = 1.  

Total transportation cost: 0*0 + 3*1 + 1*1 + 2*2 + 0*0 + 2*1 + 1*3 + 1*1 + 0*0 = 14 
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2.2.2. Starting heuristics 

Some starting heuristics refer to the combination of one of the following possibilities to select an 
OE and a location. The core is defined by the already chosen OE. After each iteration another OE 
is added to the core due to one of the following priorities: 

● Selection of (non-assigned) OE 

A1. those having the maximum sum of material flow to all (other) OE 

A2. a) those having the maximum material flow to the last-assigned OE 

b) those having the maximum material flow to an assigned OE 

A3. those having the maximum material flow to all assigned OE (core) 

A4. random choice 

● Selection of (non-assigned) locations 

B1. those having the minimum total distance to all other locations 

B2. those being neighbouring to the last-chosen location 

B3. a) those leading to the minimum sum of transportation cost to the core  

b) like a) but furthermore we try to exchange the location with neigboured OE 

c) a location (empty or allocated) such that the sum of transportation costs within the new 
core is minimized (in case an allocated location is selected, the displaced OE is assigned to 
an empty location)  

B4. random choice 

Example: By combining the simples rules A1 and B1 we have to arrange all OE referring to 
decreasing sum of material flow and all locations referring to increasing sum of distances to all 
other OE/locations (i.e. the last columns in the following tables):   

OE 1 2 3 4 5 6 7 8 9 Σ St. A B C D E F G H I Σ 

1 - - - - 3 - - - -  A - 1 2 1 2 3 2 3 4  

2  - 3 1 2 - 4 - -  B  - 1 2 1 2 3 2 3  

3   - 3 5 2 - 3 4  C   - 3 2 1 4 3 2  

4    - - - 1 - -  D    - 1 2 1 2 3  

5     - 2 2 1 -  E     - 1 2 1 2  

6      - - - -  F      - 3 2 1  

7       - - -  G       - 1 2  

8        - -  H        - 1  

9         -  I         -  
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This leads to the following sequence of OE and locations: 3, 5, 2, 7, 4, 6, 8, 9, 1 ; E, B, D, F, H, 
A, C, G, I.  

We obtain the following assignment of OE to locations:  

OE 1 2 3 4 5 6 7 8 9 

St. I D E H B A F C G 
 

OE 1 2 3 4 5 6 7 8 9  Calculation of costs: 

1 - - - - 3×3  - - - -  

2  - 3×1 1×2 2×2 - 4×2 - -  1 and 5 are assigned to I and B with 

3   - 3×1 5×1 2×2 - 3×2 4×2  material flow of 3 and  

4    - - - 1×2 - -  3 (distance 1-5) × 3 (flow I-B) 

5     - 2×1 2×2 1×1 -  and so on 

6      - - - -  

7       - - -  Total cost = 61 

8        - -  

9         -  

 

In case of random choice (rules A4 and/or B4) one has the possibility to generate a set of 
different solutions and to choose the best one out of it.   

2.2.3. Improvement methods 

We basically try to improve solutions (i.e. reduce costs) by exchanging OE-pairs (see also the 
introductive example above). In case of acceptable computational times one can also try to 
exchange OE-triples. Even in case of pair wise exchanges we have different possibilities:  

● Selection of potential pairwise exchanges: 

C1. all n(n - 1)/2 pairs 

C2. a subset of pairs 

C3. random choice 

● Selection of pairwise exchanges that are finally performed: 

D1. that pair whose exchange of locations leads to the highest cost reduction. (best pair) 

D2. the first pair whose exchange of locations leads to a cost reduction (first pair) 



Hartl, Gansterer Layout and Design 28 

© Produktion und Logistik 

 

A combination of C1 and D1 increases solution quality but also computational time. A common 
method is to start with C2 and skip to C1 as soon as the solution is reasonably good. (A 
combination of C1 and D2 is equivalent to the 2-opt method which we use to solve TSP). 

A well-known (heuristic) method is CRAFT (computerized relative allocation of facilities 
techniques) which equals (in case of OE with similar place requirements) a combination of C1 
and D1 (this method will be introduced later in this chapter in the context of OE with unequal 
place requirements).  

In case of random choice (C3 and D2) we quite often find good results. Especially the fact that 
sometimes the best exchange of all exchanges which have been checked leads to an increase of 
costs is no disadvantage, because it reduces the risk to be trapped in local optima.  

The basic idea and several adaptions/combinations of A, B, C, and D are discussed in literature.  

2.2.4. „Umlaufmethode“ 

„Umlaufmethode“ is one of the numerous heuristics which combine the idea of starting heuristics 
and imporvement methods. This method consists of the following components:  

Initialization ( i = 1):  
Those OE having the maximum sum of material flow [A1] is assigned to the centre of locations 
(i.e. the location having the minimum sum of distances to all other locations [B1]). 

Iteration i ( i = 2, ... , n): assign OE i  

Part 1: (Selection of OE and of free location):  

● select those OE with the maximum sum of material flow to all OE assigned to the core [A3] 

● assign the selected OE to a free location so that the sum of transportation costs to the core 
(within the core) is minimized [B3a] 

Part 2: (Improvement step in  iteration  i = 4):  

● check pair wise exchanges of the last-assigned OE with all other OE in the core [C2] 

● if an improvement is found, the exchange is conducted and we start again with Part 2 [D2]. 

The method ends with the finalization of iteration  i = n having assigned all OE.   

Example, at first without improvement step (only Part 1): 

Initialization ( i = 1): A      B      C      

E is the centre D      E     3 F      

We assign OE 3 to the centre (E) G      H      I       
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Sequence of assignments: 

i = 1 2 3 4 5 6 7 8  

OE 3          

1 0          

2 3         i = 3: 2 has the max. mat.fl. to the core (3, 5) 

3 ↑↑↑↑         i = 1: at first we assign 3 

4 3         i = 5 

5 5         i = 2: 5 has the max. mat.fl. to 3 

6 2         i = 6 

7 0         i = 4 

8 3         i = 7 

9 4         i = 8 

Iteration i = 2 (Part 1): the maximum material flow to the core (3) is from OE 5. 

Distances dBE = dDE = dFE = dHE = 1 is equally minimal ⇒ we select D   

⇒ In step i = 2 we assign D-5. 

Iteration i = 3 (Part 1): the maximum material flow to the core (3, 5) is from OE 2. 

Find a location X  so that dXE⋅t23 + dXD⋅t25 = dXE⋅3 + dXD⋅2 is minimal (only A, B, G or H) 
 X = A  dAE⋅3 + dAD⋅2 = 2⋅3 + 1⋅2 = 8 
 X = B  dBE⋅3 + dBD⋅2 = 1⋅3 + 2⋅2 = 7 
 X = F  dFE⋅3 + dFD⋅2 = 1⋅3 + 2⋅2 = 7 
 X = G  dGE⋅3 + dGD⋅2 = 2⋅3 + 1⋅2 = 8 
 X = H  dHE⋅3 + dHD⋅2 = 1⋅3 + 2⋅2 = 7  B, F or H ⇒ B is chosen  

⇒ In Step i = 3 we assign B-2. 
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Iteration i = 4 (Part 1) the maximum material flow to the core (2, 3, 5) is from OE 7. 

Find a location X  so that dXE⋅t73 + dXD⋅t75 + dXB⋅t72 = dXE⋅0 + dXD⋅2 + dXB⋅4 is minimal  
in the map we see that A is the best choice  
⇒  in iteration i = 4 we tentatively assign A-7. 

(Part 2) try to exchange A with E, B or D and calculate the costs of these assignments:  
 From Part 1: E-3, D-5, B-2, A-7 Cost = 1⋅5+1⋅3+2⋅0+2⋅2+1⋅2+1⋅4 = 18 
   E-3, D-5, A-2, B-7  Cost = 1⋅5+2⋅3+1⋅0+1⋅2+2⋅2+1⋅4 = 21 
   E-3, A-5, B-2, D-7  Cost = 2⋅5+1⋅3+1⋅0+1⋅2+1⋅2+2⋅4 = 25 
   A-3, D-5, B-2, E-7  Cost = 1⋅5+1⋅3+2⋅0+2⋅2+1⋅2+1⋅4 = 18 

An exchange of A and E is possible but does not lead to a cost reduction. Thus, we do not 
conduct this exchange but take the solution determined in Part 1. 

After 8 iterations (without part 2) we end up with the solution from above with total costs = 54.  

Inclusion of part 2 leads to an exchange of the last-assigned OE 9 with OE 4 in iteration 8. By 
this exchange we increase total costs to 51.   

While a manual calculation of larger problems is obviously quite time consuming an 
implementation and therefore computerized calculation is relatively simple. 

2.2.5. Different space requirements 

The solution methods discussed above are also feasible for problems considering OE with 
different space requirements (OE are assumed to be either rectangularly shaped or composed of 
rectangular pieces). But here an exchange of OE may have an influence on the shapes and 
locations of other (even not-exchanged) OE. Furthermore, one has to define the way of 
measuring distances between locations, since the distance between two OE may depend on their 
shapes. The most common distances in this context probably are: 

• Orthogonal distance between OE-boundaries: the (shortest) distance between 2 OE is 
determined by the orthogonal distance between the closest points of them. Thus, OE 
having at least 1 vertex in common have a distance of 0.  

• Rectilinear distance of centre points:  the distance between 2 OE is assumed to be the 
rectilinear distance between centroid locations. This implies the assumption that OE are 
located at their centroids. The centroid is another term for the coordinates of the centre of 
gravity or balance point. The accuracy of assuming that an OE is located at its centroid 
depends upon the shape of the OE. The assumption is most accurate when the shape of 
the OE is square or rectangular, but is less accurate for oddly shaped OE. 

Rectilinear distances between centre points are, e.g., used for the well known CRAFT algorithm, 
which we are going to discuss in the following.   
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2.2.5.1. CRAFT Algorithm 910 

CRAFT (computerized relative allocation of facilities techniques) was one of the first computer-
aided layout routines developed. It is an improvement method which means that it requires an 
initial layout to be used as a starting solution. 

Again we try to improve the given solution by moving around OE. The additional challenge now 
is that the shapes of OE are not fixed. Thus, the problem simply has too many degrees of 
freedom for us to devise a good method for modifying the starting solution. All the common 
improvement methods are based on limiting the kinds of changes that are permitted. This has 
already been addressed in the context of problems with similar space requirements.  

We know that a pair of OE that can be exchanged without a direct influence on the shapes or 
locations of all remaining OE has to satisfy one of the following conditions:  

1. the OE have the same space requirement, 

2. the OE share a common boundary (having a common boundary means that the OE share 
at least 1 side boundary of their rectangles). E.g. OE 2 and OE 5 in Figure 2-2 share 1 
side boundary.  

In Figure 2-2 you see that an exchange of OE 2 and OE 5 would be possible without affecting the 
shape or the location of the remaining OE. In this case it does not matter that OE 2 and OE 5 
have different space requirements because the total area used for them stays the same. Clearly, an 
exchange of same sized OE (no matter if they are neighboured or not) is always possible. On the 
other hand exchanging, e.g., OE 1 and OE 3, is not possible without changing the shape or the 
location of for example OE 2.  

 

     

1   4  

     

 2   5 

   3  

Figure 2-2: Different sized OE 

 

 

                                                 

9 Francis, R., McGinnis, L., White, J., Facility Layout and Location: An Analytical Approach, Prentice Hall, 1992 

10 Nahmias, S.: Production and Operations Analysis, 4th ed., McGraw-Hill, 2000, Chapter 10 
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The CRAFT algorithm, which is probably the earliest widely known improvement algorithm, 
uses an estimate of the transportation cost that is based on the rectilinear distance between the 
centroid locations.  If, e.g., OE 2 and 5 are considered for an exchange, the new costs is 
estimated by assuming that the new centroid of OE 2 is the old centroid of OE 5 and vice versa. 
This method of estimating transportation costs for the new layout is exact if OE have the same 
space requirement, but can be in error if the requirements are different. In this case we revise the 
estimated transportation costs by developing a distance chart for the new layout and calculating 
the “real” total transportation costs. This is done whenever an exchange has been identified to be 
the most useful (based on the estimation of costs) in an iteration. The algorithm continues until 
no further reductions in the predicted transportation costs can be achieved.  

So we summarize the steps to be followed according to CRAFT: 

1. Estimate total transportation costs considering all pairwise exchanges of OE that share at 
least 1 border or that are of same size (i.e. equal number of rectangles). 

2. Perform that exchange that leads to the minimum estimated total transportation costs 
(based on an estimation of distances as described above). If all possible exchanges lead to 
an increase of predicted total costs, stop here. 

3. Revise the estimated distance chart and calculate the new total costs. Go back to step 1.  

 You see that by applying this procedure the “best” exchange could be passed over, due to 
estimation errors. This generally will be the case for any improvement algorithm that does not 
actually evaluate every exchange possible.  

 

Example11: A local manufacturing firm has recently completed construction of a new plant to 
house 4 departments: A, B, C, and D. The plant is 100m2 by 50m2. The plant manager has chosen 
an initial layout of the 4 departments. This layout is given in Figure 2-3. From the figure we see 
that department A requires 1800 m2, department B 1200m2, department C 800m2, and 
department D 1200m2.  

                                                 

11 Nahmias, S.: Production and Operations Analysis, 4th ed., McGraw-Hill, 2000, Chapter 10 
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The following table contains the material flows between all departments.  

Material Flow  A B C D 
A 0 2 7 4 
B 3 0 5 5 
C 6 7 0 3 
D 8 2 3 0 

The distance between 2 departments is to be assumed as the rectilinear distance between the 
centroid locations of the corresponding departments. Try to improve the initial layout by 
applying the CRAFT algorithm (pairwise exchanges). 

 

1. Determination of distances referring to the initial layout: The centroid of a rectangular R 
is defined by 2 points ., yx   

 

 

The rectilinear distance between 2 centroid locations is 

d12 =  

 

Figure 2-3: Initial plant layout for example problem 
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For the initial layout we obtain the following centroid locations 

  Centroid 
  x y 
A 30 35 
B 80 35 
C 20 10 
D 70 10 

 

and the following distances 

 

 

 

2. Determination of current total costs:  

We multiply the distances with the material flows -> Total transportation cost: 3050 

3. Now we list all possible pairwise exchanges: 

A-B -> possible 

A-C -> possible 

A-D -> possible 

B-D -> possible 

C-D –> possible 

All other exchanges are not possible, because the departments are neither neighboured 
nor of same size. 

4. Estimate total costs for each valid exchange (assuming that the centroid locations stay the 
same): 

A-B: estimated transportation cost = 2950 

A-C: estimated transportation cost = 2715 

A-D: estimated transportation cost = 3185 

B-D: estimated transportation cost = 2735 

C-D: estimated transportation cost = 2830 

-> Exchange A-C is supposed to be the best one 

5. Perform the selected exchange and calculate the new total costs.  

Distance A B C D 
A 0 50 35 65 
B 50 0 85 35 
C 35 85 0 50 
D  65 35 50 0 



Hartl, Gansterer Layout and Design 35 

© Produktion und Logistik 

 

 

 

 

 

 

 

 

 

 

If a plane R consists of a collection of rectangles R1, R2,…, Rk the respective boundaries 
are )],(,,[( 2121 iiii yyxx  for .1 ki ≤≤   

In order to find yx,  (which describe the centroid location), we first have to obtain the 
moments of R: 

 

 

 

 

 

Let A(R) be the area of R. Then the centroid of R is given by 

 

 

 

The new centroids are  

  Centroid 
  x y 
A 30 21,667 
B 80 35 
C 20 40 
D 70 10 
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leading to the following new distances  

Distance A B C D 
A 0 63,333 28,333 51,667 
B 63,333 0 65 35 
C 28,333 65 0 80 
D  51,667 35 80 0 

 

and total costs of 2809 (we see that we do not achieve the estimated costs for this scenario 
(2715), but compared to the initial layout´s total cost we have a cost reduction anyway). 

6. Now we list all possible pairwise exchanges: 

A-B -> possible 

A-D -> possible 

B-D -> possible 

All other exchanges are not possible, because the departments are neither neighboured 
nor of same size. 

7. Estimate total costs for each valid exchange (assuming that the centroid locations stay the 
same): 

A-B: estimated transportation cost = 2763 

A-D: estimated transportation cost = 3228 

B-D: estimated transportation cost = 2982 

-> Exchange A-C is supposed to be the best one 

8. Perform the selected exchange and calculate the new total costs.  
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The new centroids are  

  Centroid 
  x y 
A 70 35 
B 20 15 
C 20 40 
D 70 10 

 

leading to the following distances  

Distance A B C D   
A 0 70 55 25   
B 70 0 25 55   
C 55 25 0 80   
D  25 55 80 0   

and total costs of 2530 (this time we had underestimated the cost reduction). 

9. Now we list all possible pairwise exchanges: 

A-C -> possible 

A-D -> possible 

B-C -> possible 

B-D -> possible 

All other exchanges are not possible, because the departments are neither neighboured 
nor of same size. 

10. Estimate total costs for each valid exchange (assuming that the centroid locations stay the 
same): 

A-C: estimated transportation cost = 3175 

A-D: estimated transportation cost = 2735 

B-C: estimated transportation cost = 2675 

B-D: estimated transportation cost = 3325 

-> no further cost reduction is expected! We stop with total costs of 2530! 
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3. Group Technology / Cellular Manufacturing 12 

3.1 Introduction 

As early as in the 1920ies it was observed, that using product-oriented departments to 
manufacture standardized products in machine companies lead to reduced transportation. This 
can be considered the start of Group Technology (GT). Parts are classified and parts with similar 
features are manufactured together with standardized processes. As a consequence, small 
"focused factories" are being created as independent operating units within large facilities.  

More generally, Group Technology can be considered a theory of management based on the 
principle that "similar things should be done similarly". In our context, "things" include product 
design, process planning, fabrication, assembly, and production control. However, in a more 
general sense GT may be applied to all activities, including administrative functions.  

The principle of group technology is to divide the manufacturing facility into small groups or 
cells of machines. The term cellular manufacturing is often used in this regard. Each of these 
cells is dedicated to a specified family or set of part types. Typically, a cell is a small group of 
machines (as a rule of thumb not more than five). An example would be a machining center with 
inspection and monitoring devices, tool and Part Storage, a robot for part handling, and the 
associated control hardware.  

The idea of GT can also be used to build larger groups, such as for instance, a department, 
possibly composed of several automated cells or several manned machines of various types. As 
mentioned in Chapter 1 (see also Figure 1.5) pure item flow lines are possible, if volumes are 
very large. If volumes are very small, and parts are very different, a functional layout (job shop) 
is usually appropriate. In the intermediate case of medium-variety, medium-volume environments, 
group configuration is most appropriate. 

GT can produce considerable improvements where it is appropriate and the basic idea can be 
utilized in all manufacturing environments: 

• To the manufacturing engineer GT can be viewed as a role model to obtain the 
advantages of flow line systems in environments previously ruled by job shop layouts. 
The idea is to form groups and to aim at a product-type layout within each group (for a 
family of parts). Whenever possible, new parts are designed to be compatible with the 
processes and tooling of an existing part family. This way, production experience is 
quickly obtained, and standard process plans and tooling can be developed for this 
restricted part set.  

• To the design engineer the idea of GT can mean to standardize products and process 
plans. If a new part should be designed, first retrieve the design for a similar, existing 
part. Maybe, the need for the new part is eliminated if an existing part will suffice. If a 

                                                 

 12 This chapter is based on Chapter 6 of Askin & Standridge (1993). It is recommended to read 
this chapter parallel to the course notes. 
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new part is actually needed, the new plan can be developed quickly by relying on 
decisions and documentation previously made for similar parts. Hence, the resulting plan 
will match current manufacturing procedures and document preparation time is reduced. 
The design engineer is freed to concentrate on optimal design. 

 

In this GT context a typical approach would be the use of composite Part families. Consider e.g. 
the parts family shown in Figure 3.1.  

 

Figure 3.1. Composite Group Technology Part  
(Askin & Standridge, 1993, p. 165). 

The parameter values for the features of 
this single part family have the same 
allowable ranges. Each part in the family 
requires the same set of machines and 
tools; in our example: turning/lathing 
(Drehbank), internal drilling 
(Bohrmaschine), face milling (Planfräsen), 
etc.  

Raw material should be reasonably 
consistent (e.g. plastic and metallic parts 
require different manufacturing operations 
and should not be in the same family).  

Fixtures can be designed that are capable 
of supporting all the actual realizations of 
the composite parts within the family.  

Standard machine setups are often possible 
with little or no changeover required 
between the different parts within the 
family (same material, same fixture 
method, similar size, same tools/machines 
required).  

In the functional process (job shop) layout, all parts travel through the entire shop. Scheduling 
and material control are complicated. Job priorities are difficult to set, and large WIP inventories 
are used to assure reasonable capacity utilisation. In GT, each part type flows only through its 
specific group area. The reduced setup time allows faster adjustment to changing conditions. 

Often, workers are cross-trained on all machines within the group and follow the job from Start 
to finish. This usually leads to higher job satisfaction/motivation and higher efficiency. 

For smaller-volume part families it may be necessary to include several such part families in a 
machine group to justify machine utilization.  

One can identify three different types group layout:  
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Figure 3.2a. GT flow line  
(Askin & Standridge, 1993, p. 167). 

 

In a GT flow line concept all parts 
assigned to a group follow the same 
machine sequence and require relatively 
proportional time requirements on each 
machine.  

The GT flow line operates as a mixed-
product assembly line system; see Figure 
3.2a. Automated transfer mechanisms 
may be possible. See also Chapter 4 for 
mixed-product assembly lines. 

      

Figure 3.2b. GT cell 
(Askin & Standridge, 1993, p. 167). 

 

The classical GT cell allows parts to move from 
any machine to any other machine. Flow is not 
unidirectional. However, since machines are 
located in close proximity short and fast transfer 
is possible. 

 

Figure 3.2c. GT center 
(Askin & Standridge, 1993, p. 167). 

The GT center may be appropriate when 

• large machines have already been located and 
cannot be moved, or  

• product mix and part families are dynamic 
and would require frequent relayout.  

Then, machines may be located as in a process 
layout by using functional departments (job 
shops), but each machine is dedicated to 
producing only certain Part families. This way, 
only the tooling and control advantages of GT 
can be achieved. Compared to a GT cell layout, 
increased material handling is necessary. 
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GT offers numerous benefits w.r.t. throughput time, WIP inventory, materials handling, job 
satisfaction, fixtures, setup time, space needs, quality, finished goods, and labor cost; read also 
Chapter 6.1 of Askin & Standridge, 1993. 

In general, GT simplifies and standardizes. The approach to simplify, standardize, and internalize 
through repetition produces efficiency.  

Since a workcenter will work only on a family of similar parts generic fixtures can be developed 
and used. Tooling can be stored locally since parts will always be processed through the same 
machines. Tool changes may be required due to tool wear only, not part changeovers (e.g. a press 
may have a generic fixture that can hold all the parts in a family without any change or simply by 
changing a part-specific insert secured by a single screw. Hence setup time is reduced, and 
tooling cost is reduced. Using queuing theory (M/M/1 model) it is possible to show that if setup 
time is reduced, also the throughput time for the system is reduced by the same percentage. 

3.2 How to form groups 

 

Askin & Standridge, 1993, Chapter 6.2 provides a list of seven characteristics of successful 
groups:  

Characteristic Description 

Team specified team of dedicated workers 

Products specified set of products and no others 

Facilities specified set of (mainly) dedicated machines equipment 

Group layout dedicated contiguous space for specified facilities 

Target common group goal, established at start of each period 

Independence buffers between groups; groups can reach goals independently 

Size Preferably 6-15 workers (small enough to act as a team with a 
common goal; large enough to contain all necessary resources) 

 

Clearly, also the organization should be structured around groups. Each group performs functions 
that in many cases were previously attributed to different functional departments. For instance, in 
most situations employee bonuses should be based on group performance.  

Worker empowerment is an important aspect of manned cells. Exchanging ideas and work load 
is necessary. Many groups are allocated the responsibility for individual work assignments. By 
cross-training of technical skills, at least two workers can perform each task and all workers can 
perform multiple tasks. Hence the there is some flexibility in work assignments. 
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The group should be an independent profit center in some sense. It should also retain the 
responsibility for its performance and authority to affect that performance. The group is a single 
entity and must act together to resolve problems.  

 

There are three basic steps in group technology planning: 

1. coding 
2. classification 
3. layout.  

These will be discussed in separate subsections. 

3.3 Coding schemes 

The knowledge concerning the similarities between parts must be coded somehow. This will 
facilitate determination and retrieval of similar parts. Often this involves the assignment of a 
symbolic or numerical description to parts (part number) based on their design and 
manufacturing characteristics. However, it may also simply mean listing the machines used by 
each part.  

There are four major issues in the construction of a coding system:  

• part (component) population 
• code detail 
• code structure, and  
• (digital) representation.  

Numerous codes exist, including Brisch-Birn, MULTICLASS, and KK-3. One of the most 
widely used coding systems is OPITZ. Many firms customize existing coding systems to their 
specific needs. Important aspects are 

• The code should be sufficiently flexible to handle future as well as current parts. 
• The scope of part types to be included must be known (e.g. are the parts rotational, 

prismatic, sheet metal, etc.?)  
• To be useful, the code must discriminate between parts with different values for key 

attributes (material, tolerances, required machines, etc.) 

Code detail is crucial to the success of the coding project. Ideal is a short code that uniquely 
identifies each part and fully describes the part from design and manufacturing viewpoints, 

• Too much detail results in cumbersome codes and the waste of resources in data 
collection. 

• With too few details and the code becomes useless.  

As a general rule, all information necessary for grouping the part for manufacturing should be 
included in the code whenever possible. Features like outside shape, end shape, internal shape, 
holes, and dimensions are typically included in the coding scheme. 
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W.r.t. code structure, codes are generally classified as, hierarchical (also called monocode), 
chain (also called polycode), or hybrid. This is explained in Figure 3.3 (taken from Askin & 
Standridge, 1993). 

 

Figure 3.3a. Hierarchical structure. 

Hierarchical code structure: the meaning of a 
digit in the code depends on the values of 
preceding digits. The value of 3 in the third 
place may indicate  

• the existence of internal threads in a 
rotational part: "1232"  

• a smooth internal feature: "2132"  

Hierarchical codes are efficient; they only 
consider relevant information at each digit. But 
they are difficult to learn because of the large 
number of conditional inferences.   

Figure 3.3b. Chain structure. 

Chain code: each value for each digit of the 
code has a consistent meaning. The value 3 in 
the third place has the same meaning for all 
parts. 

They are easier to learn but less efficient. 
Certain digits may be almost meaningless for 
some parts.  

 

Figure 3.3c. Chain structure. 

Since both hierarchical and chain codes have 
advantages, many commercial codes are 
hybrid: combination of both:  

Some section of the code is a chain code and 
then several hierarchical digits further detail 
the specified characteristics. Several such 
sections may exist. One example of a hybrid 
code is OPITZ. 

 

The final decision is, code representation. The digits can be  

• numeric or even binary; for direct use in computer (storage and retrieval efficiency) 

• alphabetic; humans are more comfortable with a coding like "S" for smooth or "T" for 
thread (Gewinde) than with digits 

The proper decision process involves the design engineer, manufacturing engineer, and 
Computer scientist working together as a team. 

A well known coding system is OPITZ. It can have 3 sections:  
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• it starts with a five-digit "geometric form code"  
• followed by a fourdigit "supplementary code."  
• This may be followed by a company-specific four-digit "secondary code" intended for 

describing production operations and sequencing. 

 

Figure 3.4. Overview of the Opitz code (Askin & Standridge, 1993, p. 
167). 

Digit 1: shows 
whether the part is 
rotational and also the 
basic dimension ratio 
(length/diameter if 
rotational, 
length/width if 
nonrotational). 

Digit 2: main external 
shape; partly 
dependent on digit 1.  

Digit 3: main internal 
shape.  

Digit 4: machining 
requirements for plane 
surfaces.  

Digit 5: auxiliary 
features like 
additional holes, etc.  

For more details on 
the meaning of these 
digits see Figure 6.6 in 
Askin & Standridge, 
1993. 

 

Figure 3.4. Opitz code 
for sample part (Askin 
& Standridge, 1993, p. 

167). 

An example for a 
coded Part is shown in 
Figure 3.5. 

Correct code: 2 2 4 0 
0 

Part coding is helpful for design and group formation. But, the time and cost involved in 
collecting data, determining part families, and rearranging facilities can be seen as the major 
disadvantage of GT. For designing new facilities and product lines, this is not so problematic: 
Parts must be identified and designed, and facilities must be constructed anyway. The extra effort 
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to plan under a GT framework is marginal, and the framework facilitates standardization and 
operation thereafter. Hence, GT is a logical approach to product and facility planning.  

3.4 Classification (group formation) 

Here, part codes and other information are used to assign parts to families. Part families are 
assigned to groups along with the machines required to produce the parts. A variety of models for 
forming part-machine groups are available in the literature, as can be seen from the following 
figure: 

 

 

Figure 3.5. Methods of group formation (xxxx). 

  

In addition to simple visual methods based on experience and the use of coding schemes, there is 
a class of mathematical methods called Production Flow Analysis (PFA). 

3.5 Production Flow Analysis (PFA) 

To group machines, part routings must be known. Section this presents a method for clustering 
part operations onto specific machines to provide this routing information.  
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The basic idea is: 

• identify items that are made with the same processes / the same equipment 

• These parts are assembled into a part family 

• Can be grouped into a cell to minimize material handling requirements. 

The clustering methods can be classified into: 

• Part family grouping: Form part families and then group machines into cells 
• Machine grouping: Form machine cells based upon similarities in part routing and then 

allocate parts to cells 
• Machine-part grouping: Form part families and machine cells simultaneously. 

The most typical methods are the machine-part grouping ones. Typically one starts with a matrix 
that shows which part types require which machine types. The aim is to sort the part types 
and machines such that some kind of block diagonal structure is obtained: 

 

Figure 3.6. Matrix of machine usage (Askin and Standridge). 

In case of the example in Figure 3.6, it is easy to build groups: 

• Group 1: parts {13, 2, 8, 6, 11 }, machines {B, D} 
• Group 2: parts { 5, 1, 10, 7, 4, 3}, machines {A, H, I, E} 
• Group 3: parts { 15, 9, 12, 14}, machines {C, G, F} 

But the question is how this sorting can be done. Various heuristic and exact methods have been 
developed. The simplest one is binary ordering, also known asrank order clustering or King’s 
algorithm 
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3.5.1 Binary Ordering (Rank Order Clustering, King’ s Algorithm)  

This is is done in three steps 

• Interpret rows and columns as binary numbers 
• Sort rows w.r.t. decreasing binary numbers 
• Sort columns w.r.t. decreasing binary numbers 

This will be illustrated in a simple example (from Günther and Tempelmeier, 1995) with 6 parts 
and 5 machines: 

 part 

machine 1 2 3 4 5 6 

A - 1 - 1 - - 

B 1 - 1 - 1 1 

C - 1 1 1 - 1 

D 1 - - - 1 1 

E - - - 1 1 - 

First, the rows are interpreted as binary numbers and sorted 

 part  

machine 1 2 3 4 5 6 value 

A - 1 - 1 - -  

B 1 - 1 - 1 1  

C - 1 1 1 - 1  

D 1 - - - 1 1  

E - - - 1 1 -  

2x 32 16 8 4 2 1  

This gives a new ordering of the machines: B – D – C – A – E. Next, we sort columns w.r.t. 
decreasing binary numbers (note the new order of rows here): 

 part  

machine 1 2 3 4 5 6 2x 
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B 1 - 1 - 1 1 16 

D 1 - - - 1 1 6 

C - 1 1 1 - 1 4 

A - 1 - 1 - - 2 

E - - - 1 1 - 1 

value 

              

This gives a new ordering of parts: 6-5-1-3-4-2. 
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The matrix with rows and columns in the new order is: 

 part 

machine 6 5 1 3 4 2 

B 1 1 1 1 - - 

D 1 1 1 - - - 

C 1 - - 1 1 1 

A - - - - 1 1 

E - 1 - - 1 - 

Now 2 groups can be formed 

• Group 1: parts {6, 5, 1}, machines {B, D} 
• Group 2: parts { 3, 4, 2}, machines {C, A, E}  

Parts 1, 4, and 2 can be produced in one cell. The remaining items 6, 5, and 3 are outside the bold 
rectangles (indicating the block diagonal structure) and cause problems. There are, in principle 3 
possibilities: 

1. these parts produced in both cells, i.e. part 6 is mainly produced in cell 1 but for 
operation on machine C it has to be transported to cell 2 

2. machines B, C, and E have to be duplicated, so that all parts can be produced within 
one cell 

3. some parts that do not fit at all could also be given to subcontractors 

Binary Ordering is a simple heuristic ⇒⇒⇒⇒ no guarantee that „optimal“ ordering is obtained. 

Sometimes a better better block-diagonal structure is obtained by repeating the Binary Ordering 
until there is no change anymore. In the above example this yields the final form of the matrix 

 part  

machine 6 5 1 3 4 2 value 

B 1 1 1 1 - - 60 

D 1 1 1 - - - 56 

C 1 - - 1 1 1 39 

E - 1 - - 1 - 3 

A - - - - 1 1 18 
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value 28 26 24 20 7 5  

Hence, repeated Binary Ordering did not help in this example. 

3.5.2 Single-Pass Heuristic Considering Capacities (Askin and Standridge) 

In the previous section we assumed that all machines have sufficient capacity to produce all 
products that need to go on this machine, i.e. we ignored capacity. The following algorithm by 
Askin and Standridge extends the model by introducing capacity considerations: 

We make the following assumptions: 

• All parts must be processed in one cell (machines must be duplicated, if off-diagonal 
elements occur in the matrix) 

• All machines have capacities (normalized to be 1) 

• There are constraints on number of identical machines in a group 

• There are constraints on total number of machines in a group 

Example: We will demonstrate the methods in an example (from Günther and Tempelmeier, 
1995) with 7 parts and 6 machines. At most 4 machines can be in a group and not mot than one 
copy of each machine is allowed in each group. The following matrix contains the processing 
times (incl. set up times) for typical lot size of parts on machines (i.e., the entries in matrix are 
not just 0/1 for used/not used). All times are normalized as percentage of total machine capacity: 

 part   

machine 1 2 3 4 5 6 7 sum min. # machines 

A 0.3 - - - 0.6 - - 0.9 1 

B - 0.3 - 0.3 - - 0.1   

C 0.4 - - 0.5 - 0.3 -   

D 0.2 - 0.4 - 0.3 - 0.5   

E - 0.4 - - - 0.5 -   

F - 0.2 0.3 0.4 - - 0.2   

By summing up all entries in a row we obtain total machine utilization. If this value exceeds one, 
at least two machines are needed. More generally, this number must be rounded up to the next 
integer to give the minimum number of machines needed. It should be noted, that this minimum 
number of machines is a lower bound. It may be necessary to use more copies of some machines 
than this minimum number suggests. 

Summing up the minimum number of machines for all machine types we obtain, that at least 9 
machines are needed. Since not more than 4 machines are permitted in a group, we know that at 
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least 9/4 = 2,25 groups are needed. Since only integer numbers of groups make sense, this must 
be rounded up to obtain the lower bound on the number of groups: at least 3 groups. 

The Single-Pass Heuristic by Askin and Standridge consists of the two steps  

1. obtain (nearly) block diagonal structure (e.g. using Binary Ordering) 

2. form cells/groups one after another: 

• Assign parts to groups (in sorting order) 

• Also include necessary machines in group 

• Add parts to group until either 

o the capacity of some machine would be exceeded, or 

o the maximum number of machines would be exceeded 

Example continued: 

For binary sorting treat all entries as 1s. The result is the matrix 

 part 

machine 1 5 7 3 4 6 2 

D 0.2 0.3 0.5 0.4 - - - 

C 0.4 - - - 0.5 0.3 - 

A 0.3 0.6 - - - - - 

F - - 0.2 0.3 0.4 - 0.2 

B - - 0.1 - 0.3 - 0.3 

E - - - - - 0.5 0.4 

Hence, the parts are considered in the following order: D – C – A – F – B – E.  

Iteration part chosen group assigned machines remaining capacity 

1 1    

2 5    

3 7    

4 3    

5 4    

6 6    
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7 2    

The final solution consists of the three cells: 

• Group 1: parts {1, 5}, machines {D, C, A} 
• Group 2: parts {7, 3, 4}, machines {D, F, B, C} 
• Group 3: parts {6, 2}, machines {C, E, F, B} 

We can compare the machines used with the theoretical minimum numbers computed earlier: 

  part   

machine 1 2 3 4 5 6 7 sum min. # Single-Pass Heuristic 

A 0.3 - - - 0.6 - - 0.9 1 1 

B - 0.3 - 0.3 - - 0.1 0.7 1 2 

C 0.4 - - 0.5 - 0.3 - 1.2 2 3 

D 0.2 - 0.4 - 0.3 - 0.5 1.4 2 2 

E - 0.4 - - - 0.5 - 0.9 1 1 

F - 0.2 0.3 0.4 - - 0.2 1.1 2 2 

Apparently, we need one more copy of machine B (2 instead of 1) and one more copy of machine 
C (3 instead of 2). 

We should note, that the Single-pass heuristic of Askin und Standridge is a simple heuristic. 
Hence, it gives not necessarily an optimal solution (min possible number of machines). 

3.5.3 LP-Model for the model by Askin and Standridg e 

The assignment of machines and parts to groups can easily be formulated as a binary integer 
program BIP. Let us consider exactly the same problem as in the previous subsection and let the 
objective be the (weighted) number of machines used. 

We will use the following notation: 

Ii ∈  cells, groups 

Jj ∈  parts 

Kk ∈  machine types 

jka  capacity of machine type k needed for part j 

M  max number of Maschinen per group 
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Furthermore, per group only one copy of each machine type is permitted. The decision variables 
are: 

ijx  =1, if part j is assigend to group i (and = 0, otherwise) 

iky  =1, if machine type k is assigend to group i (and = 0, otherwise) 

The objective is the toral number of machines used: 

 →∑∑
∈∈ Kk

ik
Ii

y  min! 

subject to the constraints: 

 ∑
∈

=
Ii

ijx 1  Jj ∈   (each part j in exactly one group) 

 ∑
∈

≤⋅
Jj

ikijjk yxa  KkIi ∈∈ ,  (capacity of machine k in group i) 

 ∑
∈

≤
Kk

ik My   Ii ∈   (not more than M machines in group i) 

 { }1,0∈ijx   JjIi ∈∈ ,  (binary variables) 

 { }1,0∈iky   KkIi ∈∈ ,  (binary variables) 

The opti al solution can be computed using some standard LP solvers. In the simple example 
above, this can be dobe using the EXCEL solver – see XLS file on the course homepage. The 
optimal solution is: 

group parts machines Remaining capacity 

1 2, 4, 6 B, C, E, F B (0.4), C (0.2), E (0.1), F (0.4) 

2 1, 5 A, C, D A (0.1), C (0.6), D (0.5) 

3 3, 7 B, D, F B (0.9), D (0.1), F (0.5) 

Hence, the simple single-pass heuristic did not find the optimal solution: 

  part     

machine 1 2 3 4 5 6 7 sum min. # Single-Pass Heur. opt 

A 0.3 - - - 0.6 - - 0.9 1 1 1 

B - 0.3 - 0.3 - - 0.1 0.7 1 2 2 

C 0.4 - - 0.5 - 0.3 - 1.2 2 3 2 
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D 0.2 - 0.4 - 0.3 - 0.5 1.4 2 2 2 

E - 0.4 - - - 0.5 - 0.9 1 1 1 

F - 0.2 0.3 0.4 - - 0.2 1.1 2 2 2 

Sum   9 11 10 

3.5.4. Clustering using Similarity Coefficients 

Another method of clustering is based on similarity coefficients. The idea is to identify machines 
which are used more or less for the same parts and to put these in a group. We define: 

 ni   ...  Number of parts visiting machine i 

 nij   ...  Number of parts visiting machines i and j 

Then the similarity coefficient between machines i and j is defined as: 

{ }ji

ij

j

ij

i

ij
ij nn

n

n
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,min
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
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


=  

Example: (from Askin and Standridge) 6 machines and 8 parts. All these calculations can easily 
be performed using EXCEL; → see the course homepage. 

 parts ni 

machine 1 2 3 4 5 6 7 8  

A 1 1 1           3 

B 1 1 1       3 

C    1 1 1 1    4 

D     1 1 1 1   4 

E        1 1 2 

F             1 1 2 

The values nij can be computed: 

nij parts  

machine 1 2 3 4 5 6 7 8  

A          
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B          

C          

D          

E          

F          

This gives the similarity coefficients: 

sij parts 

machine A B C D E F 

A 1 1 0,33 0 0 0 

B 1 1 0,33 0 0 0 

C 0,33 0,33 1 0,75 0 0 

D 0 0 0,75 1 0,5 0,5 

E 0 0 0 0,5 1 1 

F 0 0 0 0,5 1 1 

These have a similar function as the savings values known from transportation logistics. The 
following hierarchical clustering heuristic is very similar to the savings algorithm known from 
VRP. 

Before proceeding, one can eliminate all entries with sij ≤ T, where T is some parameter between 
0 and 1. By omitting the “weak” links the structure becomes clearer. Here, we choose T = 1 and 
we do not eliminate any links at the moment. 

Hierarchical clustering heuristic: 

1. Form N initial clusters (one for each machine). Compute similarity coefficients sij for all 
machine pairs. 

2. Merge clusters: Let i and j range over all clusters. Choose the pair if clusters (i*, j*) that 
has the highest similarity coefficient sij. Merge clusters i* and j* if possible.  

If  more than one cluster remains, go to 3. otherwise stop. 

3. Update coefficients: Remove rows and columns i*, j* from the similarity coefficient 
matrix. Replace them with a new row k and a new column k. For all remaining clusters r, 
the updated similarity coefficients of this new cluster k are computed as: 

srk = max {sri* , srj* }   
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In step 3, when clusters i* and j* are joined to become the new cluster k the new similarity 
coefficient to some other cluster k is computed as the maximum of the corresponding similarity 
coefficient of clusters i* and j*. This is one possible setting.  

� Other updating rules are possible, such as e.g. the average of the corresponding 
similarity coefficients. 

In the first iteration, groups i* = A and j* = B are joined to become new group k = AB. The 
updated similarity coefficients are 

sij parts 

machine AB C D E F 

AB 1 0,33 0 0 0 

C 0,33 1 0,75 0 0 

D 0 0,75 1 0,5 0,5 

E 0 0 0,5 1 1 

F 0 0 0,5 1 1 

In the next iteration, clusters i* = E and j* = F are joined to become new group k = EF. The 
updated similarity coefficients are: 

 

sij  parts 

machine AB C D EF 

AB 1 0,33 0 0 

C 0,33 1 0,75 0 

D 0 0,75 1 0,5 

EF 0 0 0,5 1 

Next, clusters i* = C and j* = D are joined to become new group k = CD. The updated similarity 
coefficients are: 

sij   parts   

machine AB CD EF 

AB 1 0,33 0 

CD 0,33 1 0,5 
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EF 0 0,5 1 

If groups should be joined further (because the constraints permit this), clusters i* = CD and j* = 
EF are joined to become new group k = CDEF.  

The following figure shows at which 
thresholds (corresponding to T mentioned 
above) which groups can be formed. 

For T = 1 only the groups AB and EF can be 
formed, while machines C an d form their 
own single machine roups. 

For T = below 0.33 all machines are joined in 
one group. 

 

Figure 3.7. Dendogram for a hierarchical 
clustering (Askin and Standridge). 

 
 

3.5.5. Group Formation using Graph Partitioning 

When machines have common parts, i.e., nij > 0 in the notation of Section 3.5.4, then ideally they 
should be in the same group. Otherwise, duplication of machines or transportation between 
groups is necessary. This could be graphically represented as a graph with the nodes being the 
machines, where edges between machines mean common parts: 

Figure 3.8. Graph representation of the 
example (Askin and Standridge); 

numbers at the edges are the common 
parts. 

 

 

Then group formation can be seen as a special case of graph partitioning. This can be formulated 
as follows:  

Given a graph with nodes and edges, find a partitioning of the node set into a (given) 
number of disjoint subsets of approximately equal size, such that the total cost of edges 
that connect nodes of different subsets is minimized. 

Graph partitioning is an np-hard combinatorial optimization problem. Various exact and heuristic 
methods have been developed over the past decades. We describe a simple and well known 
heuristic by Kernighan and Lin (1970) for clustering in two subsets. 
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3.5.5.1 Graph partitioning heuristic by Kernighan and Lin (KL) 

Input: A weighted graph G = (V, E) with  

• Vertex set V. (|V| = 2n) 
• Edge Set E. (|E| = e)  
• Cost cAB for each edge (A, B) in E. 

Output: 2 subsets X & Y such that 

• V = X ∪ Y   and   X ∩ Y = { }   (i.e. partition) 
• Each subset (group) has n vertices 
• Total cost of edges “crossing” the partition is minimized. 

Complete enumeration (brute force) is not possible (np-hard): 

• Try all possible bisections. Choose the best one. 
•  If there are 2n vertices ⇒ number of possibilities = (2n)! / (n!)2 = nO(n)  
• For 4 vertices (A,B,C,D), 3 possibilities  

1.  X = {A, B}  &  Y = {C, D} 

2.  X = {A, C}  &  Y = {B, D} 

3.  X = {A, D}  &  Y = {B, C} 

• For 100 vertices  ⇒  5 × 1028 possibilities 

KL-Algorithm: 

The KL-Algorithm is an improvement algorithm, that starts with any initial partition X and Y 
(e.g. obtained using any constructive algorithm) 

• A pass means exchanging each vertex A ∈ X with each vertex B ∈ Y exactly once: 

1. For i := 1 to n do 

From all unlocked (unexchanged) vertices, 

choose a pair (A, B) such that the gain(A, B) is largest. 

Exchange A and B. Lock A and B. 

Let gi = gain(A, B). (can also be negative) 

2. Find the k s.t. G = g1 + ... + gk is maximized. 

3. Switch the first k pairs. 

• Repeat the pass until there is no more improvement (G = 0). 

The complexity of this algorithm (in a naïve implementation) is as follows. For each pass, O(n2) 
time is needed to find the best pair to exchange; n pairs are exchanged ⇒ the total time is O(n3) 
per pass. But there are better implementation that need O(n2lg n) time per pass. And the number 
of passes is usually small. 
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Example for KL-Algorithm: 

 

Initial weighted graph G with 6 vertices (nodes),  

V(G) = { a, b, c, d, e, f }. 

Start with any partition of V(G) into X and Y, e.g.,  

X = { a, c, e }   
Y = { b, d, f } 

The cut value is the sum of all edge costs between the 
2 sets: 

cut-size  =  3 + 1 + 2 + 4 + 6  =  16 

Try to improve this partitioning (i.e. reduce cut-size) 
using KL. 

For each node x ∈ { a, b, c, d, e, f }.compute the gain values of moving node x to the others set: 

Gx = Ex - Ix  

where 

Ex = cost of edges connecting node x with the other group (extra) 
Ix = cost of edges connecting node x within its own group (intra) 

This gives: 

Ga = Ea – Ia = 3 – 4 – 2= – 3  

Gc = Ec – Ic = 1 + 2 + 4 – 4 – 3 =0   

Ge = Ee – Ie = 6 – 2 – 3 = + 1   

Gb = Eb – Ib = 3 + 1 –2 = + 2   

Gd = Ed – Id = 2 – 2 – 1 = – 1   

Gf = Ef  – If  = 4 + 6 – 1 = + 9   

Cost saving when exchanging a and b is essentially Ga + Gb  

However, the cost saving 3 of the direct edge (a, b) was counted twice. But this edge still 
connects the two different groups ⇒ must be added twice. Hence, the real “gain” (cost saving) of 
this exchange is 

gab = Ga + Gb - 2cab 

Must compute this for all possible combinations (pairs): 

a 

c 

b 

d 

e f 

3 

1 

2 

4 

3 4 

6 

2 

1 

2 
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gab = Ga + Gb – 2wab = –3 + 2 – 2⋅3 = –7  

gad = Ga + Gd – 2wad = –3 – 1 – 2⋅0 = –4  

gaf = Ga + Gf – 2waf  = –3 + 9 – 2⋅⋅⋅⋅0 = +6  

gcb = Gc + Gb – 2wcb = 0 + 2 – 2⋅1   =   0  

gcd = Gc + Gd – 2wcd = 0 – 1 – 2⋅2   = –5  

gcf = Gc + Gf – 2wcf   = 0 + 9 – 2⋅4   = +1  

geb = Ge + Gb – 2web = +1 + 2 – 2⋅0 = +1  

ged = Ge + Gd – 2wed = +1 – 1 – 2⋅0 =   0  

gef = Ge + Gf – 2wef   = +1 + 9 – 2⋅6 = –2  

The maximum gain is obtained by exchanging nodes a and f ⇒ new cut-size  =  16 – 6 = 10. 

 

Perform this exchange  

Verify: new cut-size  =  1 + 1 + 2 + 4 + 2 = 10 

Lock all exchanged nodes (a and f) 

New sets of unlocked nodes: 

X’  = { c, e }   
Y’ = { b, d } 

Update the G-values of unlocked nodes 

G’c = Gc + 2cca – 2ccf = 0 + 2(4 – 4) = 0  

G’e = Ge + 2cea – 2cef = 1 + 2(2 – 6) = –7  

G’b = Gb + 2cbf – 2cba= 2 + 2(0 – 3) = –4 

G’d = Gd + 2cdf – 2cda = –1 + 2(1 – 0) = 1 

Compute the gains: 

gcb = Gc + Gb – 2wcb =  

gcd = Gc + Gd – 2wcd =  

geb = Ge + Gb – 2web =  

ged = Ge + Gd – 2wed =  

Pair with maximum gain (can also be neative) is (c, d). 

a 

c 

b 

d 

e 

f 

3 

1 

2 

4 

3 4 6 

2 1 

2 
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Perform this exchange between c and d. 

new cut-size  =  = 10 – (-3)  = 13 

Lock all exchanged nodes (c and d) 

New sets of unlocked nodes: 

X’  = { e }   
Y’ = { b } 

Update the G-values of unlocked nodes 

G’e = Ge + 2ced – 2cec =  

G’b = Gb + 2cbd – 2cbc=  

Compute the gains: 

geb = Ge + Gb – 2ceb  = –1 – 2 – 2⋅⋅⋅⋅0   = –3  

Summary of the Gains… 

� g1 = +6 
� g1 + g2 = +6 – 3 = +3 
� g1 + g2 + g3 = +6 – 3 – 3 = 0 

Maximum gain is g1 = +6 ⇒ Exchange only nodes a and f.  End of 1 pass. 

This pass must be repeated until no changes are observed any more. 

 

 

3.5.5.1 Application of graph partitioning (KL) to group formation 

We do this in the above example: 

 parts 

 

machine 1 2 3 4 5 6 7 8 

A 1 1 1           

B 1 1 1       

C    1 1 1 1    

D     1 1 1 1   

E        1 1 

a 

d 

b 

c 

e 

f 

3 
1 

2 

4 

3 4 6 

2 1 

2 
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F             1 1 

Assume that from capacity considerations (min number of machines) it is clear that at least 2 
copies of machines A, B, and C are necessary. Hence we duplicate machines A, B, and C: 

 parts 

machine 1 2 3 4 5 6 7 8 

A1 1 1            

B1 1 1        

A2   1           

B2   1       

C1    1       

C2     1 1 1    

D     1 1 1 1   

E        1 1 

F             1 1 

This gives the graph, where the costs cij = nij from Section 3.5.4 (i.e. the number of common 
parts). 

 

Let us assume that we need 3 clusters with at least 2 and at most 4 machines each. We start with 
an initial clustering with 3 machines each. For this, we simply use the rows of the above matrix 
(apparently this is not the best clustering, but we want to demonstrate the improvement step). 

Note that we have also added dummy machines /with zero cost connections) to represent empty 
spaces that could be occupied by real machines (note that up to 4 machines are permitted). 

We start with optimizing the partition Group 1 = {A1, A2, B1, Dummy1} and Group 2 = {B2, 
C1, C2, Dummy2} while we keep Group 3 = {D, E, F, Dummy3} unchanged for the moment. 

Next, we apply the KL heuristic to Group 1 and Group 2: 
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For all nodes in these groups, we compute Ex, Ix, and Gx. 

Group Node i Ei I i Gi 

1 A1 0 2 -2 

 B1 0 2 -2 

 A2 1 0 1 

 Dummy1 0 0 0 

2 B2 1 1 0 

 C1 0 1 -1 

 C2 0 0 0 

 Dummy2 0 0 0 

Next we compute the Gij 

Node i Node j Gij Gij
’  Gij

”  

A1 B2 -2 -4  

 C1 -3  -3   

 C2 -2 -2  

 Dummy2 -2   

B1 B2 -2 -4  

 C1 -3 -3  

 C2 -2 -2  

 Dummy2 -2   

A2 B2 -1   

 C1 0 

 C2 1 

 Dummy2 1 ←←←← 

Dummy1 B2 0 -2  
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 C1 -1 -1 

 C2 0 0 ←←←← 

 Dummy2 0  

We could choose the pairs (A2, C2), (A2, Dummy2), or (Dummy1, C1). We arbitrarily choose 
(A2, Dummy2) and fix these two machines (nodes). Then we update Gi: 

Gi
’ = Gi + 2ciA2 – 2ciDummy2 in Group 1 and Gj

new = Gj + 2ciDummy2 – 2cjA2 in Group 2. 

  Group Node i Gi
’ Gi

”  

1 A1 -2+0-0 = -2  

 B1 -2+0-0 = -2  

 Dummy2   

 Dummy1 0  

2 B2 0+0-2 = -2  

 C1 -1+0-0 = -1  

 C2 0+0-0 = 0  

 A2   

Then we update Gij. We can do this in the above table in a new column. No improvements 
possible, but the switch (Dummy1, C2) is the best one (no change in cost). This change is 
performed and the machines Dummy1, C2 are fixed. New group 1 = {A1, B1, Dummy2, C2} and 
group 2 = {B2, C1, Dummy1, A2} where fixed values are cancelled. Next step with Gi

”  and Gij
” . 

We see that only the first step brought an improvement and get the new partition:  
group 1 = {A1, B1, Dummy2, Dummy1}, and group 2 = {B2, C1, C2, A2}. 

We could repeat this pass of the KL heuristic, but since the cut-value of this partition is zero, we 
know that this is already the optimal partition of these 8 machines (including 2 dummies). 
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In a similar way, the KL heuristic can be applied to groups 2 and 3 to exchange C2 and Dummy3. 
Then the optimal partition with cut-value zero is obtained in this example. 

In general, this procedure is a heuristic and it is not guaranteed that an optimal partition is found. 

3.5.6 Group analysis without binary ordering: “key"  machine 

In the previous section we have briefly discussed graph theoretic methods based on KL. This was 
an improvement heuristic (to improve a given partition), or it could also be used as a constructive 
method. Using the idea of recursive bisection, first two groups (af approvimately equal size) are 
formed. Each of these is then split into two subgroups and so on. After k such steps one has 2k 

groups. 

Askin and Standridge (1993, § 6.4.1) also present another simple algorithm, that does not need 
binary ordering and where the opposite approach is used, i.e., where “atomic” subgroups are 
formed that can subsequently be combined to larger groups: 

1. The machine with the fewest part types is called the "key" machine . A subgroup is 
formed from all the parts that visit this key machine along with all machines required by 
these part types.  

2. Check if (except for the key machine) the machines in the subgroup fall into two or more 
disjoint sets with respect to the parts they service. If disjoint subsets of the subgroup 
exist, the subgroup is again subdivided into multiple subgroups.  
If any machine is included in the subgroup due to just one part type, then this machine is 
termed exceptional and removed.  

Steps 1 and 2 are repeated until all parts and machines are assigned to subgroups.  

3. The final step involves combining subgroups into groups of the desired size. Subgroups 
with the greatest number of common machine types are combined.  

Example:  parts 

 machine 1 2 3 4 5 6 7 8 

(no duplication of machines) A 1 1 1           

 B 1 1 1       

 C    1 1 1 1    

 D     1 1 1 1   

 E        1 1 

 F             1 1 

The data has been ordered using binary ordering so that similarities are more easily seen. 
However, this is not necessary in this method. 

Solution: 
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Iteration 1: 

Step 1. Identify a key machine.  
Machines E and F receive the fewest components ⇒ Arbitrarily choose E as key machine.  
Parts 7 and 8, visit E. These parts require machines D, E, and F, thus forming a subgroup. 

Step 2. Check for subgroup division:  
Ignoring machine E, all parts visit machine F ⇒ subgroup cannot be further subdivided. 
Machine D is used only for part 7  ⇒  D is exceptional for this subgroup and is removed. 

Iteration 2: 

Step1 . Identify new key machine. Six parts remain.  
All machines receive at least three parts ⇒ Arbitrarily choose A.  
Parts 1, 2, and 3 form the subgroup along with machines A, B, and C. 

Step2 . Subgroup division:  
Removing machine A does not create disjoint subgroups for parts 1,2, and 3.  
Machine C is used for part 3 only ⇒ exceptional ⇒ remove.   

Iteration 3: 

Step1 . Identify a new key machine. Only parts 4, 5, and 6 remain.  
C is the key machine. The subgroup becomes parts 4, 5, and 6 along with machines C and 
D.   

Step2 . No further subdivision is possible. No exceptional machine. 

Result of Steps 1 and 2:  parts 

 machine 1 2 3 4 5 6 7 8 

 A 1 1 1           

 B 1 1 1       

 C    1 1 1 1    

 D     1 1 1 1   

 E        1 1 

 F             1 1 

Step3 . Aggregation: The decision maker can now attempt to recombine the three subgroups into 
a set of workable groups of desired size. 
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3.6 Metaheuristics  

We have briefly discussed some of the classical constructive heuristics and improvement 
heuristics from the literature. 

Since we are dealing with a tactical problem (that is not solved every day) where long 
computation times are acceptable, it makes sense to invest more time. This can be done by 
applying metaheuristics, exact methods (up to a certain problem size) and combined methods 
(matheuristics). 

There is a large literature on applying metaheuristics and grouping or clustering problems 
(mainly genetic algorithms or tabu search). Nevertheless, various possibilities exist to come up 
with new metaheuristic approaches. 

Examples: 

• Since the similarity coefficients are rather similar to the savings values of transportation 
logistics (VRP), the idea of a savings based ant system for VRP could be transferred to 
grouping problems. 

• The KL algorithm could be considered a local search (maybe in a simplified faster 
version), and could be combined with some larger shaking steps to a VNS. Other fast 
local searches (exchange and move) could be considered. 

• A matheuristic could easily be constructed by applying e.g. the principle of destroy and 
reconstruct: for a large problem, a subset of groups could be “destroyed” and all their 
machines and parts could be freed. Then this smaller problem (considering only these 
parts and machines) could be solved using some exact algorithm (e.g. applying CPLEX to 
a MIP formulation). 

When designing metaheuristics or matheuristics for grouping problems, there are also 2 
possibilities: 

• Work directly on the model formulation (e.g. the above examples) 

• Use a more aggregated representation and then apply some constructive algorithm to 
compute the solution out of it. For example, the metaheuristic could just work on the 
ordering of parts and machines (to give a better block diagonal structure than binary 
ordering) and then the single pass heuristic by Askin and Standridge could be used to 
construct a solution. 

It should also be noted that there ate various classes of grouping problems that differ w.r.t. 
objective and constraints. This concerns e.g. duplication of machines and/or inter-group 
transport, etc. 
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4. Exact Methods for Assembly Line Balancing 
We have seen in the beginning of this chapter, that an Assembly Line Balancing (ALB) problem 
can be represented as a binary LP. Smaller instances can be simply solved by using a general 
purpose LP-solver. For very large instances of this np-hard problem, heuristics need to be used - 
see the previous sections.  

Since ALB problems are tactical problems that are solved only now and then, the results need not 
be available very soon and computation time can in principle be quite long. 

Hence, a number of tailored exact methods have been developed for ALB problems. The most 
well known ones are based on Dynamic Programming (DP) and Branch & Bound (B&B). In the 
next subsections we present two such algorithms for Alternative 1, i.e. where the cycle time is 
given and the number of stations has to be minimized. 

Jackson Algorithm (Dynamic Programming,  Decision Tree) 

This was the first and simplest exact method that was specially designed for ALB problems. 
Later improved algorithms have been suggested but the dominance rules are still of general 
relevance. 

Construction of a Decision Tree 

The individual stations of the assembly-line are considered one by one.  

In the first stage one generates all possibilities for the allocation of the first station, where one 
considers only maximal stations (i.e. no additional operations can be added). Hence, one obtains 
a number of different states, which are described by the operations already assigned to station 1.  

Step from stage k-1 to stage k: 

The state in stage k-1 represents all operations already assigned to stations 1 to k-1 (not only k). 

In stage k, for each such state in stage k-1, one forms all maximal stations k and obtains the 
corresponding states in stage k.  

As soon as a state is reached where all operations have been assigned, the optimal solution is 
reached and k is the minimal number of stations. 

As usual in DP, the allocations of the individual stations can be determined by backtracking. 

The problem can also be considered as a shortest path problem with nodes being the states and 
the edges representing the allocations of the stations. The starting node is the empty set and the 
terminal node represents the situation where all operations are assigned. 

Jackson Algorithm 

Given:  

c   …  cycle time 

A  = {1, … , n}   … set of all operations with  

tj  ... durations tj ≤ c; 

Precedence graph (i.e. set of all immediate predecessors V(j) or successors N(j)) 

Notation used: 
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k  … Stage (station number) 

Zk  ... state in stage k; set of all operations that have already been assigned in 
stages/stations 1 to k-1, i.e.. Zk ⊆ A 

L1 ... list of all states in stage k-1  

L2 ... list of states in stage k 

Ek ... set of possible alternative assignments to station k 

Sk ... current assignment to station k in stage k 

Start:  L1:= < {} ];  (empty set - nothing assigned yet) 

Iteration k = 1, 2, ... : 

L2:= <]; ... (start with an empty station) 

while L1 ≠ < ] do (as long as not all states of stage k-1 have been considered) 

begin 

choose and remove the first element Zk-1 of L1: 

construct the set Ek of all possible allocations of station k: 

( ) ( ) ( )( )Ek k k k 1 k k 1 k j
j S

: S S A Z j S  gilt V j Z S t c
k

= ⊆ − ∧ ∀ ∈ ⊆ ∪ ∧ ≤



























− −

∈
∑ ;

 

(i.e. all subsets of the set of not yet assigned operations A - Zk, such that all 
predecessors are already assigned and total workload does not exceed cycle time)  

eliminate non maximal assignments:  (dominance rule 1) 

( ){ }E E Ek k k k k k k: \ S S mit S S= ∃ ′ ∈ ⊂ ′ ; 

while Ek  ≠ {}  do (add the new stations k to the states in list L2) 

begin 

select and remove an element Sk of the set Ek; 

Zk := Zk-1∪Sk;  (add Sk to the previous state Zk-1) 

add Zk to list L2; 

if Zk = A then begin m: = k; stop end; (all operations assigned) 

end; 

end; 

L1: = L2; 

Result: optimal assignment with m stations found. 
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Example: c = 4  

precedence graph 

  2          1
  3 4 5
1   3
   2 3
2

 

A possible decision tree is indicated below.  

The columns represent the stages, 
the nodes correspond to the possible states,  
the arrows correspond to the possible station allocations, 

The numbers in the nodes indicate a possible sequence in which 
these states are generated (sequence is arbitrary within a stage).  

 

 

If the operations are considered in sequence 1, 
2, 3, 4, and 5 the following optimal solution is 
obtained:  

 

      {2,4}     3    {3,5}    6

      {1}    1

  0      {4, 5}     4

      {2}    2

        {1}      5

        1              2                 3
     Station  

If the operations are considered in the opposite 
sequence (5, 4, 3, 2, 1), one obtains the 
following decision tree with the first optimal 
solution on node 9,  

i.e. it depends on the sequence when the 
optimal solution is found in the last stage. The 
states in the previous stages are however not 
affected by the sequence. 

        {4, 5}     6

         {1}     3

      {2}    1            {3}      7

  0       {4, 5}    4               8
      {1}    2               {2}

      {2,4}     5   {3,5}    9

        1             2                3
     Station  

Dominance rules 

Clearly, the decision tree can become very large in case of many operations.  

Hence, one tries to reduce the size of the tree by deleting some of the branches as soon as 
possible. 

Since (usually) just one optimal solution is required, all sates and stations cen be ignored that are 
dominated by some other station with the same starting state Zk-1. 

A state or station is dominated by another one, if the former cannot lead to a better solution than 
the latter. 

The first dominance rule we have already considered in the algorithm: 

 

Dominance rule 1: station assignment Sk with starting state Zk-1 is dominated by station 
assignment S'k with the same starting state, if  Sk ⊂ S'k. 
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Example: In the above example in stage 2 the station assignments S2 = {2} and S2 = {4} are 
dominated by S'2 = {2, 4}. 

 

For the next dominance rules we need the following definition: 

Für weitere Dominanzregeln definieren wir Nachfolgermengen von Knotenmengen J wie folgt:  

( ) JjN
Jj

JN −
∈

= U)(   ... set of all immediate successors of all operations in set J. 

With this, we can formulate: 

Dominance rule 2: station assignment Sk with starting state Zk-1 is dominated by station 
assignment S'k with the same starting state, if the following holds: 

∑∑
∈

≤
∈ 21 Jj

t
Jj

 t jj
 and ( ) ( )21 JNJN ⊆   

where 
J1 = Sk - S'k  and  J2 = S'k - Sk  

 

Because of the first condition, station S'k has more workload assigned (less idle time). 

The second condition guarantees that all operations that depend on J1 also depend on J2. This 
means, that all successors of J1 are only available, if all operations in J1 and J2 have been 
assigned. 

Choosing station assignment S'k instead of Sk leads to a station that has not more idle time and 
represents not more restrictions for the planning in the subsequent stages. 

The application of this rule can be time consuming. Hence, it is sometimes only applied in case 
of  
| J1| = | J2| = 1. 

It is possible that two station assignments dominate each other. In this case one of them can be 
dropped while the other must be kept. 

Example above: Because of dominance rule 2 station  
S1 = {2} is dominated by S'1 = {1} in stage 1, since 

• S'1 has more workload assigned (less idle time) than 
S1, t2 < t1 and  

• N(S1 - S'1) = N({2}) = {3}  
N(S'1 - S1) = N({1}) = {3, 4},  
i.e. N(S1 - S'1) ⊂ N(S'1 - S1) 

Hence the partial tree starting in node 1 can be eliminated. 

In the same way, in stage 2 and Z1 = {2} the possible 
station assignment S2 = {4, 5} is dominated by S'2 = {2, 4}. 

          {4, 5}     6 

          {1}     3    

      {2}    1            {3}      7 

  0       {4, 5}    4               8 

      {1}    2               {2}   

       {2,4}     5   {3,5}    9 

        1             2                3  
     Station  
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Remark: The following example shows, that condition N(J1) ⊆ N(J2) is actually needed and that 
a better workload alone does not guarantee dominance: 

 

Example:  c = 40  
   30    30
1 4
   21
2    10    10      10
   21 5 6  7
3

 

Although t1 ≥ t2 and t1 ≥ t3, the stations S1 = {2} 
and  S1 = {3} are not dominated by S'1 = {1}. 

This is because J1 = {2} and J2 = {1} so that   
N(J1) = {5} is not contained in N(J2) = {4}.  

The optimal solution is  
S1 = {2}, S2 = {3, 5}, S3 = {1, 6}, S4 = {4, 7}  

It is only reached if S1 = {2} is chosen in the first 
stage. All other states in stage 1 yield a solution 
with 5 stations. 

 

The next dominance rule extends dominance rule 1 from stage k (operations assigned in stage k) 
to state k (set of all operations assigned in stages 1 to k): 

 

Dominance rule 3: A state Zk is dominated by state Z'k in the same stage k, if    Zk ⊆ Z'k. 

 

Example: In the above example  
state 3 represents the (assigned) operations {1,2} 
while state 5 represents operations {1, 2, 4}. 

Because of {1, 2} ⊂ {1, 2, 4} state 3 is dominated 
by state 5.  

If with 2 stations already operations 1, 2, and 4 
can be assigned, then it makes no sense to keep a 
state where with 2 stations only operations 1 and 
2 are assigned. 

States 6 und 8 are identical, because they both 
represent the operations {1, 2, 4, 5}. One of them 
could be deleted. 

          {4, 5}     6 

          {1}      3    

      {2}    1            {3}      7 

  0       {4, 5}     4               8 

      {1}    2               {2}   

       {2,4}      5   {3,5}    9 

        1             2                3  
     Station  

 

The next dominance rule extends dominance rule 3 from stage k (operations assigned in stage k) 
to state k (set of all operations assigned in stages 1 to k): 

 

Dominance rule 4: A state Zk is dominated by state Z'k, if for J1 = Zk - Z'k and J2 = Z'k - Zk holds: 

∑ ∑
∈ ∈

≤
1 2Jj Jj

jj  tt  and ( ) ( )21 JNJN ⊆  
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Example: In the above example states 7 and 8 
dominate each other and one of them could be 
deleted. 

          {4, 5}     6 

          {1}      3    

      {2}    1            {3}      7 

  0       {4, 5}     4               8 

      {1}    2               {2}   

       {2,4}      5   {3,5}    9 

        1             2                3  
     Station  

Rules 2 and 4 can be quite time consuming and it is not always clear whether they lead to a 
reduction in computation time. 

Pinto Heuristic 

As already mentioned, the ALB problem can be considered as a shortest path problem. We have 
seen that the complete graph need not be developed since one can stop as soon as in one node all 
operations have been assigned, and also because of pruning the tree by dominance rules. 

However, the graph/tree will still be very large. Therefore a heuristic has been developed that is 
based on this shortest path problem but only considers a subgraph (at the cost of loosing the 
guarantee of optimality). 

Heuristic by Pinto  

1. Find some good (and feasible w.r.t. precedence) orderings of the operations using e.g. 
different priority rules 

2. For each of these orderings (permutations) (j l,. ... , jn) of operations, define nodes (states)  
Z0 = {}, { j l}, { j l, j2}, ... , Zend = { j l, ... , jn}.  

3.  Draw an arrow from node Z to Z' if Z' - Z represents a feasible assignment of a station in 
the sense that cycle time is not exceeded: ∑

−′∈

≤
ZZj

j ct   

4. In the resulting graph find the shortest path from Z0 = {} to Zend = { j l, ... , jn}.  

 

Often this heuristic finds improved solutions compared to the application of simple priority rules. 
However there is no guarantee that the optimal solution is found. 

 

Example: Reconsider the above example and choose the two orderings (2, 1, 4, 5, 3) and  
(1, 4, 5, 2, 3). With c = 4 one obtains the following graph:  
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The shortest path (minimum number of arrows) is shown in bold. By coincidence the optimal 
solution is reached. 

The B&B algorithm by Johnson von (FABLE) 

The above DP algorithm can be considered a "breadth" search in the sense that all nodes in a 
certain stage are considered, before proceeding to the next stage. This way, the first feasible 
(complete) solution is already the optimal one. If the algorithm is stopped because of time 
restrictions no feasible solution is available. 

The B&B algorithm by Johnson tries to search the corresponding tree in the sense of "depth" 
search by trying to reach leaves of the search tree (complete solution) soon. It is also known as 
FABLE (Fast Algorithm for Balancing Lines Effectively). 

Like in all B&B algorithms it is important to keep the tree small by appropriate pruning. In 
addition to the above dominance rules, also bounds are used. 

First we describe the branching process, and then we will discuss the different ways of pruning 
the tree. 

Branching Process  

In the starting node 0 no operations have been assigned yet. 

In each iteration an additional operation is assigned (or in a backtracking step an operation is 
removed).  

A new station is opened whenever no further operation can be assigned to the previous one 
(because of cycle time and precedence). Hence, we again only consider maximal stations 
(compare dominance rule 1) 

In B&B, there are always 2 possibilities last bound (the last node is extended) or best bound (the 
most promising node is extended). Here the last bound approach is chosen, i.e. in a kind of LIFO-
strategy always the last generated subset is investigated further. 

In order to obtain a good first solution, the operations are ordered according to some priority 
rules. In FABLE, the sorting is done (considering precedence relations) by the rules: 

1. sort according to decreasing operation times tj (i.e. allocate long operations first) 

2. in case of a tie, use decreasing number of immediate successors   

3. in case there is still a tie choose randomly  

 

Example:  

Cycle time c = 4  

 

    2          1 
   3 4 5 
 1   3 
    2 3 
 2 

 

The graph on the left is the precedence graph. 
The nodes are the operations. 

This gives the ordering (1, 2, 3, 4, 5): 

The first two candidates (ready to be assigned) 
are 1 and 2. Because of rule 1 we select 1. 

Then we could assign 2 or 4. Rules 1 and 2 do 
not help, so we select 2 by rule 3, etc. 

The algorithm starts like a normal priority rule method, i.e. the operations are assigned in the 
selected ordering. If some operation cannot be assigned anymore to a station, because the cycle 
time is exceeded, on tries to insert the next operations in the list. 
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First, station 1 is built as {1}. No other operation 
can be assigned anymore. 

In the next station we first insert operation 2. 
Then only 4 is ready to be assigned (3 would not 
fit!). So station 2 is completed.  

Finally 3 and 5 enter station 3. 

We have found a "leaf" of the B&B tree: 

Feasible solution (3 stations): {1}, {2, 4}, {3, 5} 

 

If we would use just a priority rule, we were 
happy now and would stop (or add an 
improvement heuristic).  

In an exact method we must check all alternative 
solutions in principle. Hence, one has to perform 
backtracking. We have to go back in the tree to 
find the last "crossroad" where not all directions 
/alternatives have been investigated yet.  

On the left we see all these "branching" 
opportunities. 

We go back to node 3, where instead of choosing operation 3 (by the heuristic rule) we could 
have also chosen operation 5.  

By starting station 3 with node 5, the next selection would be node 3 and we would obtain the 
same station {3, 5}. In FABLE, this duplicate effort is avoided by permitting only increasing 
operation numbers within a station. I.e. after 5, operation 3 cannot be assigned anymore to the 
same station. Hence we do not consider node 6 any further, but proceed by further backtracking. 

The next branching opportunity is in node 1 where instead of operation 2 one could also have 
chosen operation 4.  

 

Again, in order to avoid double 
consideration of the station 
configuration {2, 4}, operation 2 after 
operation 4 in station 2 is not 
considered - within a station 
operations are only added with 
increasing numbers. Hence, the only 
possibility for station 2 is {4, 5}.  

 

Then this station is maximal and one proceeds to station 3. The only possibility here is {3}.  

Station 4 then contains only operation 3. However, already before (at node 9) one could have 
stopped, since it was clear that this branch leads to more than 3 stations and already one solution 
with 3 stations is known. Hence this branch cannot laed to anoptimal solution and backtracking 
could be started already in node 9 without constructing node 10. 
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In fact, already in node 8 one could start backtracking, since it is clear that one needs at least 3 
stations in this branch and - as mentioned - already one solution with 3 stations is known. This 
branch cannot lead to an improvement.  

 

Finally, backtracking to the first 
"crossroads" one reaches branching 
node 0 and chooses operation 2 as 
the first one. This complete the 
maximal station 1 as {2}. 

In the next step the only maximal 
station is {1}. 

In node 12 one has again 2 possible 
operations to be chosen, 3 and 4. We 
start with the lower index, i.e. 
operation 3. Station {3} is maximal. 

In node 13 or even in node 12 one could have already stopped, since it is clear that no solution 
with less than 3 stations will be found. All branches have been investigated and the algorithm 
stops.  

The solution {1}, {2, 4}, {3, 5} with 3 stations is optimal. 

For didactical reasons, in the above graph also the branching after node 12 is shown, even if it is 
not necessary. 

Algorithmic Description of the Branching Process  

Given: cycle time c; n operations with durations tj ≤ c (j = 1,...,n); precedence graph; ordering of 
operations according to priority rule (an arrow can only lead from a node to another node with a 
higher index number). 

Notation used: 

k current station number 

p number of already assigned operations  

A[1..p] operations that are ready to be assigned (in stage p of the B&B tree)  

c [1..k] idle time of the current station  l,...,k 

a  last operation considered: positive a means that a has been added; negative a means 
that a was removed in the last backtracking step 

K Set of operations, that are candidates to be assigned in the current station (observing 
precedence in this station)  

An operation j is ready to be assigned, if j has not yet been assigned, all predecessors have been 
assigned, and its duration does not exceed the remaining cycle time in the currents station. 

Algorithm 

Start:  k := 1; c [l] := c; p := 0; K :={l} (Arbeitsgang 1 wird als erster eingeplant) 

Iteration:  
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repeat 

if  K ≠ φ  then  (candidates for assignment in station k?) 

begin a := min { j ∈ K}; assign operation a end (step forward)  

else  if a < 0 or an operation can be assigned then 

 eliminate operation A[p] (backtracking step)  

else 

begin k: = k + 1; c [k]: = c; a: = 0 end; (open new station) 

K: = { j  j can be assigned ∧ j >  a  } (set of candidates for station k) 

until p = 0 and K = φ; (no more branching possible?)  

 

Result: The best found solution is optimal. 

 

In this algorithm we use: 

 

Procedure: eliminate operation A[p]; 

begin 

if c [k] = c then k: = k - 1;  (delete empty station) 

a:= -A[p]; (from the current ststion delete 

 c [k]: = c [k] + tA[p];    p: = p-1 that operation that was added last)  

end; 
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Procedure: assign operation a; 

begin 

 p: = p+l; A[p]: = a; c [k] := c [k] - tA[p];  

 if p = n then 

begin new feasible solution found; save it if it is the currently best one;  

eliminate operation A[p]  

end; 

end 

 

Above 
example:  

Cycle time c = 
4  

 

  2          1
  3 4 5
1   3
   2 3
2

 

 

We illustrate some steps : 

 

Start:  k := 1; c [l] := 4; K := {1} 

It. 1: a := 1; assign operation 1 (node 1); K := φ 

It. 2: no operation can be assigned; open station k = 2; K := {2,4} 

It. 3:  a := 2; assign operation 2 (node 2); K := {4} 

It. 4:  a := 4; assign operation 4 (node 3); K := φ 

It. 5:  no operation can be assigned; open station k = 3; K := {3,5} 

It. 6:  a := 3; assign operation 3 (node 4); K := {5} 

It. 7:  a := 5; assign operation 5 (node 5); feasible solution with 3 stations:  
S1 = {1}, S2: {2,4}; S3 = {3,5}; save; eliminate operation 5;  
a := -5 (back to node 4); K := φ 
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It. 8:  a < 0; eliminate operation 3; a := 3 (back to node 3); K := {5} 

It. 9:  a := 5; assign operation 5 (node 6); K := φ 

It. 10.  operation 3 can be assigned; eliminate operation 5; a := -5 (back to node 3); K := φ 
(although 3 could be assigned, we do backtracking, since combination {3,5} in 
station 3 was already considered) 

It. 11: operations 3 and 5 could be assigned; eliminate op. 4; a := -4 (back to node 2); K := φ 

It. 12: operation 4 can be assigned; eliminate operation 2; a := -2 (back to node 1); K := {4} 

It. 13: a := 4; assign operation 4 (node 7); K := {5} 

It. 14: a: = 5; assign operation 5 (node 8); K := φ 

It. 15: no operation can be assigned; open station k = 3; K := {2} 

It. 16: a := 2; assign operation 2 (node 9); K := φ 

It. 17: no operation can be assigned; open station 4; K := {3} 

It. 18: a := 3; assign operation 3 (node 10); feasible solution with 4 stations: S1 = {1};  
S2 = {4,5}; S3 = {2}; S4 = {3}; eliminate operation 3; a := -3 (back to node 9); K := 
φ 

etc. 

Fathoming of subproblems/branches in FABLE: 

It is important to find ways to remove (delete, fathom) as many branches of the B&B tree in 
order to speed up the process. For that, one can use dominance rules (just like in DP)  as well as 
bounds on the objective.  

Here, we use Dominance Rules 1 and 2. Dominance rule 1 (maximal stations) is implicitely used 
in the algorithm; rule 2 must be slighty reformulated compared to FABLE. 

Dominance Rule 2': A node of the tree can be deleted, if for the current maximal station Sk 

holds:: 
There exists an operation h ∈ Sk and an operation j that has not yet been assigned such 
that N(h) ⊆ N(j)  and  th ≤ tj  and  c [k]- t j + th ≥ 0. 
If th = tj and N(h) = N(j) gilt, also j > h is required. 

In the example node 8 is dominated by node 3, since there station 2 has more workload assgned 
and N(5) ⊆ N(2) gilt.  

Also node 11 is dominated by node 1. 

Dominance Rule 2´ can be applied in 2 steps. In a pre-processing step (before branching) all pairs 
if operations (h, j) are stored, that satisfy the fisrt two conditions (potential dominance).  

Just before opening a new station one checks for each operation h whether it is dominated by 
another operation j ∈ K that is ready to be assigned. In this case we delete the node and start 
backtracking.. 

FABLE uses two more dominance rules: 
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First Station Dominance Rule: If the current maximal station is a subset of (or identical to) an 
alternative for station 1 that has already been constructed and stored , then this node can 
be deleted. 

Example: node 12 can be deleted because of node 1. 

FABLE also uses some Labelling Dominance Rule, which we do not present here. 

 

The use of Bounds: 

Nodes can also be deleted, if lower bounds for the remaining number of stations indicate that the 
currently best solution cannot be improved in this branch. 

With J denoting the set of operations that have not yet been assigned (in Fable: J = A): 
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Clearly, only an integer number of station makes sense. Hence tha above bounds can be rounded 
up to the next integer. 

• LB1(J) corresponds to the minimum number of stations mmin from the beginning of Chapter 4.  

• LB2(J) counts operations with durations exceeding half of the cycle time. Out of these only 
one can be in a station since two would not fit. Operations with duration c/2 need exactly half 
a station, so that two such operations can be in a station. All shorter operations are ignored. 

• LB3(J) is a generalization of LB2(J) to thirds of the cycle time.  

Example from the very beginning of thios 
chapter: 

Cycle time now c = 10.  

We compute bounds LB1(A) to LB3(A) fort he 
artificial node  P0 (before 1 und 2): 

LB1(A) = 55/10 = 5.5  since  Σtj = 55. 

( ) { } { }
( ) { } { } 51,3,4,52,8,11ALB

4.541,2,8,11ALB

2
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Rounding up, we get LB1(A) = 6 and  
LB2(A) = LB3(A) = 5. Hence we need at least 6 
stations. 

Extensions for mixed model assembly 

There exists versions of the DP and of the B&B algorithm for mixed model assembly. 

The idea is to compute ALL optimal solutions (with minimal number of stations). Out of these 
the ones where the workload is distributed best (cf. Thomopoulos) is chosen. 
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In order to find all optimal solutions (not just one) all nodes that can also lead to a solution with 
the same number of stations must be kept. Above we only kept those where an improvement was 
possible. Hence the tree becomes larger and the computation times will increase. 

 

 


