Exercise 8

Parts 1 to 12 have to be produced on 6 machines A; B, C, D, E, and F.

	1	2	3	4	5	6	7	8	9	10	11	12
A	1	1	1	1	1							1
B	1						1	1	1	1		
C	1	1	1	1	1						1	
D						1	1	1	1	1	1	
E		1	1	1	1	1						
F						1	1	1	1	1		1

a) Show that this yields the following graph of common parts:

b) Assume that the graph of common parts is as given above. Let the initial clustering of machines in 2 groups be $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ and $\{\mathrm{D}, \mathrm{E}, \mathrm{F}\}$. Using the Kerninghan-Lin algorithm find an improved clustering of the 6 machines in 2 groups.

Excercise 9

Fort he final assembly of a product 10 jobs need to be done (A, B, ..., J). The following table contains the processing times (in minutes) and precedence conditions for all jobs.

Job	Precedessor	Proc.time
A	-	7
B	-	8
C	-	7
D	A, B	6
E	C, D	12
F	D	8
G	E	10
H	E	12
I	F, H	8
J	G, H	9

a) Determine the cyle time if production is done in 2 working shifts, each of them taking 8 hours, and an output quantity of 50 items.
b) Apply the following priority rules for assigning jobs to stations (apply rule 1 first, rule 2 is only to be applied in case of equality obtained with rule 1

Rule 1: Choose jobs according to monotonuously increasing upper bound for the number of stations needed for job j and all his precedessors.

$$
\mathrm{PV}_{\mathrm{j}}:=\mathrm{E}_{\mathrm{j}}=\left\lceil\left(t_{j}+\sum_{h \in V_{j}^{m}} t_{h}\right) / c\right\rceil
$$

Rule 2: Decreasing positional weight („Positionswert")
c) Calculate the system's efficiency.

Exercise 10

Models A, B and C are to be produced by mixed-model assembly. The following table contains the precedence conditions and processing times for all jobs of all models:

	A		B		C	
Job	Precedessor	t_{jA}	Precedessor	$\mathrm{t}_{\mathrm{j} \mathrm{B}}$	Precedessor	t_{jC}
a	-	4	-	3	-	1
b	a	7	a	1	-	3
c	a	2	d	2	d	3
d	a	1	-	5	a	2
e	b, d	5	$\mathrm{~b}, \mathrm{c}$	2	a	1
f	c, e	1	e	4	$\mathrm{~b}, \mathrm{c}, \mathrm{e}$	3

We have to produce 3 units of model A, 1 unit of model B, and 2 units of model C. The planning horizon is 60 time units.
a) Assign jobs to stations by applying the heuristic of Thomopoulos $(\lambda=0)$.
b) Assume λ to be 20. Does the solution found in a) change?

Exercise 11

Models A, B and C are to be produced by mixed-model assembly. The following table contains the precedence conditions and processing times for all jobs of all models:

	A		B		C	
Job	Pred.	$\mathrm{t}_{\mathrm{j} A}$	Pred.	t_{jB}	Pred.	$\mathrm{t}_{\mathrm{j} \mathrm{C}}$
a	-	2	-	3	-	2
b	a	3	a	2	a	2
c	-	-	a	2	a	1
d	b	4	a	6	a	1
e	b	6	-	-	b, c	2
f	e, d	2	$\mathrm{~b}, \mathrm{c}, \mathrm{d}$	2	$\mathrm{~d}, \mathrm{e}$	1

We have to produce 1 unit of model A, 2 units of model B, and 2 units of model C. The planning horizon is 40 time units.
a) Assign jobs to stations by applying the heuristic of Thomopoulos $(\lambda=0)$.
b) What happens if λ is assumed to be 34 ?

Exercise 12

Consider the following precedence graph for an assembly line. The numbers above the nodes (operations) indicate the durations.

a) What is the minimal possible cycle time, if exactly 2 stations should be built. Explain why!
b) Let the cycle time be $\mathrm{c}=5$. Find the optimal assembly line balancing using dynamic programming (Jackson).

