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1. Introduction 2

Layout decisions are one of the key facts detemgirthe long-run efficiency of operations.
Layouts have numerous strategic implications bexatley establish an organization’s
competitive priorities in regard to capacity, premes, flexibility, and cost. They are associated
with the tactical decision horizon and are deditdtethe concretion of strategic decisions like,
e.g., facility location. Configured production ssis are input for the operational level, where
the goal is to run the given system as efficieatfyossible.

An efficient layout facilitates and reduces costsnuaterial flow, people, and information
between areas. To achieve these objectives, atyasfeconfiguration designs have been
developed. The most relevant ones, in the contiexi®course, are:

1. Fixed-position layout: addresses the layout requirements of large, uigjects

2. Job shop production (Process-oriented layout): deals with low-volunhggh-variety
production

3. Cdlular manufacturing systems (work cell layout): arranges machinery agaipment
to focus on production of a single product or gro@ipelated products

4. Flow shop production (Product-oriented layout): seeks the best perdoamd machine
utilization in repetitive or continuous production.

As a matter of fact layouts 1 and 2 are often dlesdras centralized, and layouts 3 and 4 as
decentralized manufacturing systems.

Examplé: To illustrate the differences in fixed-positioaybut, job shop production, cellular
manufacturing systems, and flow shop productiorsicar a situation in which four parts (A, B,
C, D) are to be produced and assembled into aesprgiduct. The processing sequence for part
A is saw, turn, mill, and drill; for part B it isas/, mill, drill, and paint; for part C the processi
sequence is grind, mill, drill, and paint; and fpart D the sequence is weld, grind, turn, and.drill
All parts go to a central assembly department. fdlewing table contains the proportional
capacity requirement of each part on each mactalaive to the capacity availability of the
machine in one time period.

Equipment requirements

Part | Weld | Grind |Saw |Turn Mill  Drill PRaint
A - - 0.5 0.5 03| 0.2 -
B - - 0.4 - 05 | 0.3 0.2
C - 0.4 - - 03| 05 0.3
D 0.3 0.5 - 0.3 - 0.2 -

! Heizer, J., Render, B., Operations ManagemenhtieeeHall, 2006, Chapter 9

2 Francis, R., McGinnis, L., White, J., Facility layt and Location: An Analytical Approach, Prentidall, 1992
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Based on the given capacity requirements we knaw tthe minimum equipment needed is: 1
weld, 1 grind, 1 saw, 1 turning machine, 2 mills3@.5+0.3 > 1), 2 drills, and 1 painting
machine.

According to the layout concepts listed above tbioWwing configurations for the example
problem could be realized (this is not a complésé of all possible configurations but an
illustrative selection of possible realizations).

1. In case of a fixed-position layout it may be suéfid to have the minimum machine
equipment (see above). But depending on how pramucd scheduled it could also be
necessary to install more machines in order to comevith the needed production

output.
Drill Mill
Drill Mill
Turn l l Grind
Stores — Workpiece —» | Warehouse
Saw I Assembly
Weld Paint

Figure 1-1: Fixed-position layout

2. By applying a job shop production system we are ablreach the minimum machine
equipment. Clearly, depending on production scheduit may become necessary to
install more machines than the minimum equipment.

| v
- Saw - Turn - Mill M l
I \—+ > o
o | w| |E| |2
2| » Grind > Ml ®| | @ ©
0 , o @ %
t } 1 |F
—
> Weld Drill prin — 1 1
L &

Figure 1-2: Job shop production
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3. Figure 1-3 illustrates a cellular manufacturingteys for the example problem. For the
chosen configuration (2 work cells) it is not pb#sito realize the minimum machine
equipment. We need an additional turning machimeaamadditional painter.

Turn - Mill - Drill
2 o =
0 Group A T, | = @
0|+ o = 3
o E 2
&l ARdi
g=] = i [}
o Group B Sl 5= =
= o
’—> Turn —l
| !
Grind — Mill —» Drill

Figure 1-3: Cellular manufacturing system

4. Figure 1-4 shows a flow shop production systenttierexample problem. In this case we
need 5 machines additional to the minimum equipnm@ngrind, 1 saw, 1 turning
machine, 1 mill, and 1 paint):

Figure 1-4: Flow shop production

Saw - Turn Mill - Drill -
= @
b4 Saw -»> Mill Drill || Paint | E 4
= [=]
& ARk
Grind > Mill Drill - FPaint | g =
=

Weld - Grind Turn - Drill -

The decision to use a fixed-position layout is geltye dictated by a particular characteristic of

the workpiece. It layout is used when the prodsctoo large or cumbersome to be moved
through the various processing steps. Consequehttyprocesses are brought to the product
rather than taking the product to the processgs decraft industry,..).
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This concept is realized by locating workstationpmduction centres around the product in the
appropriate processing sequence. Considerabletitsgere involved in ensuring that the right
processes are brought to the product at the rigleistand are located in the right places.

Advantages:

Material movement is reduced.
Promotes job enlargement by allowing individual$éeams to perform the “whole job”.

Highly flexible; can accommodate changes in proddesign, product mix, and
production volume.

Independence of production centres allows scheglutm achieve minimum total
production time.

Limitations:

Increased movement of personnel and equipment.
Equipment duplication may occur.

Higher skill requirements for personnel.

General supervision required.

Cumbersome and costly positioning of material agmmery.

Low equipment utilization.

However, the decision to use either a job shopkwetl, or flow shop layout generally depends
on the volumes of production and variety of produming manufactured. Figure 1-5 illustrates a
volume-variety chart

% Francis, R., McGinnis, L., White, J., Facility layt and Location: An Analytical Approach, Prentidall, 1992
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Flow Work Job
shop cells shop
prod. prod.

Production volume

I

Product variety

Figure 1-5: Volume-variety chart

Flow shop production is appropriate for high-volynh@w variety conditions. Working cell
manufacturing systems are usually used for “in leetw conditions, and job shop production is
applied for low-volume high-variety settings. Incfamany real world layouts tend to be a
combination of all three of them (hybrid layouthél'volume-variety mix among products can be
such that a few products are manufactured using flbop production, others using job shop
production, and the remainder using working celhaofacturing. Similarly, it may be useful to
appropriate to use either job shop production orkimg cells for the production of individual
components and to use a flow shop system for thenasly of the components.

In the following we are going to discuss job shopdoiction, cellular manufacturing systems and
flow shop production in more detail. Occurring optiation problems and dedicated solution
methods will be discussed as well.
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2.Job shop production *°

The process-oriented layout can simultaneously leaadavide variety of products. It is typically
the low-volume, high-variety strategy. Each prodoctproduct group undergoes a different
sequence of operations. It is produced movingoiinfone department to another in the required
sequence. Different products have different mdtdigavs. Thus, it is not efficient to arrange
machines due to a product-oriented layout (flowpséystem) but according to a process-oriented
layout.

A process-oriented layout consists of a collectadnprocessing departments or cells. All
machines involved in performing a particular pr@acese grouped together in a machine shop
(e.g. drill, weld,..). This concept is used wheerthare many low-volume, dissimilar products. It
is also used in case of rapid changes in productamvolume, as well as when conditions are
such that neither product-oriented nor cellular ufacturing systems are useful. In comparison
with cellular manufacturing systems this layout @gpt is characterized by high degrees of
interdepartmental flow. A big advantage of this qass-oriented layout is its flexibility in
equipment and labor assignment. The breakdown @hwechine need not halt an entire process;
work can be transferred to other machines in tipadment.

Advantages:
» Better utilization of machines can result; consedjyefewer machines are required.

* A high degree of flexibility exists relative to egment or manpower allocation for
specific tasks.

» Comparatively low investment in machines is reqlire
» The diversity of tasks offers a more interesting aatisfying occupation for the operator.
» Specialized supervision is possible.
Limitations:
» Since longer flow lines are needed, material hagds more expensive.
* Production planning and control systems are marelwed than for other layouts.

e Usually, total production time is longer than foher layouts.

* Heizer, J., Render, B., Operations ManagementtieeeHall, 2006, Chapter 9

® Francis, R., McGinnis, L., White, J., Facility layt and Location: An Analytical Approach, Prentidall, 1992
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* Due to the fact that jobs have to queue before gog@irocessed in a machine job
comparatively large amounts of in-process inventmgur.

» Comparatively high degree of (machine) idle timeduwse machines have to wait until
the subsequent job is finished with its foregoingcess.

* Space and capital are tied up by work in process.

» Because of the diversity of the jobs in specialidegartments, higher grades of skill are
required.

Negative effects like idle or waiting times shoudd reduced by using dedicated production
planning methods (on the operational level) andngped machine shop arrangement on the
tactical level. These tactical optimization probtemeferring to the optimal arrangement of
machines in job shop production systems are knasvtAasignment problems”. Although the
typical problem in this context refers to the “Quattt assignment problem” we first want to
introduce the basic model: the “Linear assignmeoblem”.

2.1. The Linear Assignment Problem

The Linear Assignment Problem (LAP) is one of the most famous problems in linear
programming and in combinatorial optimization. Apaom its application to intra-company
location planning is can be used for a number loéioplanning problems.

Given

n machines (jobs, workers)
n potential locations ( periods, projects)
Cj ... cost of running machineon position.

Any machine can be assigned to any location, imogisome cost that may vary depending on
the machine-location assignment. It is requirecuse all locations by assigning exactly one
machine to each location in such a way that thed tatsts of the assignments are minimized.

The LP is formulated as follows.
Xj = 1, if machina is assigned to locatiopnand 0 otherwise
n n . n
C=3>2CjX; - min o, _leij = 1 for i=1,..,n ..assign all machines
J:

i=1j=1

n
2.%j =1 for j=1,...,n... 1 machine at each location
i=1

x; 20 fori=1,..,n andj=1,...,n

Example 1:3 machines, 4 locations and the following cagténachine 2 may not be assigned to
location 2 - > costo):
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location | =
i\j 1 2 3 4
maschine 1 13 10 12 11
i = 2 15 00 13 20
3 5 7 10 6

Convert the given problem into a symmetric one digidg dummy-machines (-rows) or dummy-

locations (-columns) with cost O:

location | =
ivji |l 2 K | 4
maschine 1 13 10 12 11
i = 2 15 0 13 20
3 5 7 10 6
dummy 4 0 0 0 0

Locations being assigned to a dummy-machine reraaipty. A machine being assigned to a
dummy-location means that this machine is physicatht allocated to any of the potential

locations.

2.1.1. Formulation as transportation problem

Linear assignment problems can be interpreted asiapcase of a generalansportation
problem (TP). The latter is formulated as follows:

m supplier with supplg, i=1, ... ,m
n consumer with demardj, j =1, ... ,n

transportation costs; per unit transported fromtoj

decision variables; indicate the amount of units transported friotm]

m n
Transportation cosK = 3’ > ¢jXj — min

Supply

Demand

Nonnegativity

i=1j=1
n

§=2% i=1.
=1
m

dj=2x% =1,
i=1

XijZO 1=1,.
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In order to derive the LAP from the TP we interprechines as suppliers with a capacity of 1
and each location as consumer with a demand ofds, ®#ach LAP can be solved as special case
of transportation problems. It is known that du¢hi® problem structure the optimal solution of a
TP consists of (m+n-1) integer basis variables (afeme do not explicitly constrain integer
property!). Clearly, this problem characteristicvalid for the LAP (as it has been derived as
special case of the TP) as well. Since for the LAPassume “supply” (machines) = “demand”
(locations) = 1 it is automatically guaranteed lbdain an optimal solution consisting of exactly
decision variables with value 1 while all otherightes are 0 (although the formulation basically
allows non-integer variables as well). Thus, we iobtafeasible solution for the LAP. Clearly,
finding a feasible solution premises to have anakgumber of machines and locations (m=n),
which has already been mentioned above and isgbdtite mathematical LAP formulation as
well.

Example 1as TP:

i\ 1 2 3 4 S
1 13 10 12 11

2 15 0 13 20

3 5 7 10 6

4 0 0 0 0

d; 1

There is another problem characteristic which wegaiag to make use of in order to solve the
LAP: it is always possible to reduce (or increasékentries of any column or row by a certain
value without changing the optimal solution (oriye tabsolute costs change, the relation stays
the same). We use this characteristic in ordeetemate the maximum amount of O entries in the
cost matrix. By subtracting the smallest elemenéath column and row from all elements of
this column/row we generate the maximum number eh®ies while not having any influence
on the optimal solution. Clearly, the absolute d¢astors do change by this matrix reduction, but
the relation of assignment costs for each macluoation definitely stays the same.

Example 2 Cost reduction

Cost matrix:

A 1 8 15
B 6 2 10
C 7 9 3
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In this case the column minimum method finds thenogl solution. Machines A, B, and C are

assigned to locations |, Il, and lll, respectivel}e end up with total assignment costs of 6
(=1+2+3).
Cost reduction:
I Il 1]
A 0 6 12
B 5 0 7
C 6 7 0
-1 -2 -3

Again the column minimum method leads to the follmyvassignment: A-l, B-Il, C-lll. This
solution has total (reduced) assignment costs @h&h implies that we found an optimal

solution. By adding the sum of reduction valuesttie reduced assignment costs we again
determine the total assignment costs: 0+1+2+3=6.

Usually, especially when solving larger probleniss inecessary to apply some iterations of the
Transport-Simplex-Method in order to find the optirsalution.

However, for the LAP we know specialized methodadieg to the optimal solution more

quickly (cf. Appendix A referring to problem compgley). The most famous one will be
presented in the following.

2.1.2. Assignment Method (Kuhn’s Algorithm) ®

Kuhn’s Algorithm involves adding/subtracting apprafe values to/from the given cost factors

in order to find the lowest opportunity cost (fooeg@ or not-obtained profits) for each
assignment.

“There are 3 steps to be followed:

1. Subtract the smallest number in each column froenyerumber in that column and then,
from the resulting matrix, subtract the smallestioer in each row from every number in
that row. This step has the effect of reducingrtbmbers in the table until a series of
zeros (at least 1 per column and row), meaning pemortunity costs, appear.”

2. Draw the minimum number of vertical and horizorgibight lines necessary to cover all
zeros in the table. This minimum number of linesagthe maximum number of zero
cost assignments. Thus, if the number of lines aqiie number of rows/columns in the

® Heizer, J., Render, B., Operations ManagemenhtieesHall, 2006, Chapter 15
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table, then we can make an optimal assignmenhelfniumber of lines is less than the
number of rows or columns, we proceed to step 3.

At this point we want to complete this step of fke&signment Method by specifying the

procedure during step 2. In fact, finding the miaimnumber of vertical and horizontal

lines necessary to cover all zeros in a matrix b®jyrivial in case of very small matrices,

but should be solved systematically in case ofdaones. Thus, we want to introduce the
following procedure in addition to step 2:

We proceed systematically by choosing a columnowr with as few as possible zero
entries (preferably exactly one 0) and framing ¢&ig) a O in this column or row. This
leads to an interim assignment.

Then we cross all remaining zeros in this colummosy. Now in each column or row
related to a framed O all other zeros are crosdadrwmeans that in this column or row
no further assignments are possible.

Now the next column or row with as few as possim@-marked (not crossed and not
framed) zeros is chosen and so on. We stop asaoeve do not have zeros left to be
framed. Now we have an arrangement of marked caduemd rows including all zeros.

If we are able to make an assignment with (reducesdis of O for each machine we have
found an optimal assignment otherwise we proceddllasvs:

2.1. Mark (for example ,X*) all rows with no framex

2.2. Mark all columns having at least 1 crossed & imarked row

2.3. Mark all rows having a framed 0 in a markellicm

2.4. Repeat 2.2 and 2.3 until there is no colummwarleft to be marked

2.5. Mark each non-marked row and each marked coligmaded) with a continuous
line -> all framed zeros are crossed now and wee ltag minimum number of
crossed lines and rows needed to cover all zemsthe maximum number of
zero cost assignments. If this number equals tmebeu of rows or columns an
optimal assignment is already found (in this caseould not have been necessary
to perform the given subprocedure (2.1.-2.6.) bseawe should already have
succeeded in finding a zero cost assignment asided@bove).

3. “Substract the smallest number not covered by & lfrom every other uncovered
number. Add the same number to any number(s) §titige intersection of any two lines.
Do not change the value of the numbers that arersal/by only one line. Return to step
2 and continue until an optimal assignment is dussi

Some assignment problems entail maximizing peffiectiveness, or payoff of an assignment of
people to tasks or of jobs to machines. It is @agybtain an equivalent minimization problem by
converting every number in the matrix to an oppuoitiu loss. To convert a maximization
problem to an equivalent minimization problem, whtsact every number in the original matrix
from the largest single number in that matrix. Vilernt proceed to step 1. It turns out that
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minimizing the opportunity loss produces the sanssigmnment solution as the original

maximization problem.”

Example 1:
i\j 1 2 3 4 S
1 13 10 12 11 1 -10
2 15 0 13 20 1 -13
3 5 7 10 6 1 -5
4 0 0 0 0 1
d; 1 1
Step 1: Reduced costs
i\j 1 2 3 4 S
1 3 0 2 1 1
2 2 o0 0 7 1
3 0 2 5 1 1
4 0 0 0 0 1
o] 1 1 1 1
Step 2: Optimal solution?
i\j 1 2 3 4 S
1 3 0 2 1 1
2 2 0 0 7 1
3 0 2 5 1 1
4 9] 0 0] 0 1
d; 1 1 1 1

In this case we see at first glance that an optsokition is obtained with the following
assignment: 1-2 2-3 3-1 4-4 (we have a zeroasmgnment for each machine; the minimum
number of lines needed to cover all zero elemeptdavbe equal to the number of
rows/columns).

Example 2:

"Heizer, J., Render, B., Operations ManagemenhtieesHall, 2006, Chapter 15
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Step 1: Cost reduction

17,5 15 9 5,5 12 -0,5

16 16,5 10,5 5 10,5

12 155 145 11| 55 | =>

4,5 8 14 17,5 13

13 95 | 85 12 17,5

Step 2: Optimal solution?

12,5 6,5 0 —6- 6

11,5 8,5 2 0 5

7,5 7,5 6 6 0

0 —0 5,5 12,5 7,5

8,5 15 | —6 7 12

We are not able to make an assignment with (reduoests of O for each machine. Thus, we
proceed with finding the minimum arrangement of kedr columns and rows including all O

elements.

12,5 6,5 0 0 6
11,5 8,5

7,5 7,5 6 6

0 0 5,5 12,5 7,5
8,5 15 0 7 12

© Produktion und Logistik



Hartl, Preusser

Layout and Design 17

Step 3: Generation of additional zeros.

125 | 6,5 | [0] 6 |Xo

11,5 | 85 2 [0] 5 | X0

75 | 75 | 6 6 | [o]

[0] 55 | 125 | 7.5

85 | (15 7 12 | X(1a)
X (1b) X (2b)

From all covered elements we choose the smalleg.€lément is going to be subtracted from
all not covered elements and is going to be add@dl elements being covered twice.

11 5 0 0 4,5
10 7 2 0 3,5
7,5 7,5 7,5 7,5 0

0 0 7 14 7,5
7 0 0 7 10,5

1 additional zero (assignment 5 2)
increases the chance the find an assignment
with total (reduced) costs of 0.

Step 2: Optimal solution?

Again we have to find out if we already are ablelébermine the optimal assignment.

lteration 2:

11 [0] | —& | 45
10 7 2 | [o] | 35
7,5 7,5 7,5 75| [0]
[0] | = | 7 14 7,5

[0]

—0 7 10,5

We have found the optimal solution with reducedgmssent costs of 0.

The total costs are calculated by summing up alucgdn values (clearly, element “a”
determined in step 3 is a reduction value as well):

K=(45+8+85+5+55+0,5)+(1,5) = 33,5
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2.2. The Quadratic Assignment Problem (QAP)

The more common mathematical formulation for intbapany location problems (especially in
case of job shop production) is tQeiadratic Assignment Problem (QAP). For the QAP the cost
of an assignment is determined by the distanceshendhaterial flows between all given entities.
While, in case of LAP the costs for assigning a Imma& to a location do not depend on the
location chosen for any other machine we now warteke distances of locations and material
flow between entities into account as well.

So called Activity Relationship Charts’ are useful graphical means of representing the
desirability of locating pairs of machines/operationear to each other. The following letter
codes have been suggested in literature for detérgna “closeness” ratiny:

“A  Absolutely necessary. Because two machines/tipesa use the same equipment or
facilities, they must be located near each other.

E Especially important. The facilities may for exdgenrequire the same personnel or
records.

I Important. The activities may be located in semaein the normal work flow.

0] Ordinary importance. It would be convenient towdnghe facilities near each other, but it
IS not essential.

U Unimportant. It does not matter whether the ftie are located near each other or not.

X Undesirable. Locating a wedding department nee that uses flammable liquids would
be an example of this categor{.”

Examplé: “Met Me, Inc., is a franchised chain of fast-foodnburger restaurants. A new
restaurant is being located in a growing suburbasmenunity near Reston, Virginia. Each
restaurant has the following departments:

1. Cooking burgers

2. Cooking fries

3. Packing and storing burgers
4. Drink dispensers

5. Counter servers

6. Drive-up server

® Nahmias, S.: Production and Operations Analysfsed., McGraw-Hill, 2000, Chapter 10

° Nahmias, S.: Production and Operations Analysfsed., McGraw-Hill, 2000, Chapter 10
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The burgers are cooked on a large grill, and thiedrare deep fried in hot oil. For safety
reasons the company requires that these cookingsar®t be located near each other. All
hamburgers are individually wrapped after cookingdastored near the counter. The service
counter can accommodate six servers, and the ageah area reserved for a drive-up window.

An activity relationship chart for this facility @ears in the following. In the chart ,each pair of
activities is given one of the letter designatighsg, I, O, U, or X. Once a final layout is
determined, the proximity of the various departraara@n be compared to the closeness ratings
in the chartFigure 2-1 illustrates the activity relationship chart foré¢ime Inc .

In the original conception of the QAP a number ggvthe reason for each closeness rating is
needed as well. In case of closeness rating “Xégative value would be used to indicate the
undesirability of closeness for the according maesioperations.
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Cooking burgers

Cooking fries

Packing and storing

Drink dispensers

Counter service

Drive-up service

Figure 2-1: Activity relationship chart

2.2.1. QAP: Mathematical formulation

For the model formulation we need both distancasvéen the locations and material flow
betweerorganizational entities (OE):

e n organizational entities (OE): all of them are ahsasize and can therefore be interchanged
with each other.

e nlocations: each can be provided with exactly oie O
e ty, ... intensity of material flow from ORto OEi

e di...distance between locatipand locatiork (e.g. shortest distance of central points);
distances are not necessarily symmetric. Transpmmtabsts are proportional to amount
transportedcandto distance.

If OE his allocated to locatiopand OE to locationk the transportation costs per unit from OE
h to OEi are defined by. Similar to the LAP we define

1if OEhisassignedolocationj

binary decision variablex, ={0 therw
otherwise

n n
Transportation costs per unit from @Eo OEi are Y, > d ji Xnj Xk -
j=1k=1

The objective function minimizes total transportatemsts between all OE:
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n nnn

2 2 2 2thidjk Xhj Xk — min

h=li=1j=k=1

where we refer to the following constraints (simtiathe LAP):

n
thj =1 forh=1,..,n ... each Ol on exactly 1 locationj
j=1
n
Zth =1 forj=1,..n ... each location j gets exactly 1 OEh
h=1
Xpj=0orl ... binary decision variable

While all constraints are still linear we now fagenon-linear objective function. Due to the
combination of integer property and non-linearibding optimal solutions for larger problems is
almost impossible (cf. Appendix A). Thus, heuristiethods are applied in most cases. As usual

we distinguish between starting heuristics and raw@ment methods or a combination of both
of them.

Example:Calculation of costs of 3 OE (1,2 ,3) and 3 |lawadi (A, B, C)

Distances between locatiodg Intensity of material flowty;
A B C 12 3
A A0 1 2 10 1 1
D=B|/1 0 1 T=2/2 0 2
B C
Cl3 10 31310

One possible solution would be-1 A, 2 -~ Band 3- C, i.e.xp= 1, Xog=1, X3c =1 and all
otherty; = 0. All constraints are fulfilled.
Total transportation cost: 0*0 + 1*1 + 2*1 + 1*20#0 + 1*2 + 3*3 + 1*1 + 0*0 = 17

Obviously, this solution is not optimal since OEdd 3 (which have the highest intensity of
material flow) are assigned to the locations wihih highest distance between them (A and C).

A better solution would for example be-1C, 2 - Aand 3- B,i.exc=1, Xopa=1, Xzg=1.
Total transportation cost: 0*0 + 3*1 + 1*1 + 2*20%0 + 2*1 + 1*3 + 1*1 + 0*0 = 14

Distances Intensity of material flow
C A B 12 3
2-A cfo 3 1 10 1 1
D=A[2 0 1 T=2/2 0 2
s-B|1-C BI1 1 0 33 10

© Produktion und Logistik



Hartl, Preusser Layout and Design 22

2.2.2. Starting heuristics

Some starting heuristics refer to the combinatibone of the following possibilities to select an
OE and and a location. Thmore is defined by the already chosen OE. After eaehaiion
another OE is added to the core due to one ofallenfing priorities:

e Selection of (non-assigned) OE

Al.
A2.

AS.
A4,

those having the maximum sum of material flow tqa@her) OE
a) those having the maximum material flow to thst-kEssigned OE
b) those having the maximum material flow to angrssd OE
those having the maximum material flow to all ase) OE (core)

random choice

e Selection of (non-assigned) locations

B1.
B2.
B3.

B4.

those having the minimum total distance to all otheations

those being neighbouring to the last-chosen logatio

a) those leading to the minimum sum of transpantatiost to the core

b) like a) but furthermore we try to exchange theation with neigboured OE

c) a location (empty or allocated) such that tha sdi transportation costs within the new
core is minimized (in case an allocated locatioselected, the displaced OE is assigned to
an empty location)

random choice

Example:By combining the simples rules A1 and B1 we haveairange all OE referring to
decreasing sum of material flow and all locatioefering to increasing sum of distances to all
other OE/locations (i.e. the last columns in thHeofeing tables):

OEl1 |2 |3 |4 |5|6| 7| 8| 9/ |ISt.|1A |[B |[C |[D|E|F|G|H]|I |X
1 - |- |- |- (3]-|-1-1]- Al- |1 ]2 (1]2]3|2]3]| 4
2 -3 |1 |2|-|4]-]|- B - {1 ]21]1]2]|3]|2]|3
3 - (3 15 (2 |- |3 |4 C - 131214 3| 2
4 - |- 0- 11 ]- |- D - {112 (1]|2]3
5 - 12121 - E - |1 (2 |1 |2
6 - - - |- F - 13121
7 - |- |- G - 1112
8 - |- H - |1
9 - | -
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This leads to the following sequence of OE andtlona: 3, 5, 2,7,4,6,8,9,1; E, B, D, F, H,
A C, Gl

We obtain the following assignment of OE to locasip

OE |1 |2 |3 |4 |56 |7| 8] 9

st |[I (D |E|H|B|A|F|C]|G
OE|1 |2 |3 4 5 6 7 8 9 Calculation of costs:
11- (- |- - 3x3 |- - - -
2 - [3x1 | 1x2 |2%x2 |- 4x2 |- - 1 and 5 are assigned to | and B with
3 - |3x1 |5x1 |2x2 |- 3x2 [4x2 material flow of 3 and
4 - - - |1x2 |- - 3 (distance 1-5% 3 (flow I-B)
S - |2x1|2x2 |1x1 |- and so on
6 - - - -
7 - - - Total cost = 61
8 - -
9 -

In case of random choice (rules A4 and/or B4) ome the possibility to generate a set of
different solutions and to choose the best onebitt

2.2.3. Improvement methods

We basically try to improve solutions (i.e. redwosts) by exchanging OE-couples (see also the
introductive example above). In case of acceptabimputational times one can also try to
exchange OE-triples. Even in case of pair wise anghs we have different possibilities:

e Selection of couplesfor potential exchanges:

C1. alln(n-1)/2 couples

C2. asubset of couples

C3. random choice

e Selection of coupleswhich finally are exchanged:

D1. those couple whose exchange of locations leadsetbighest cost reduction. (best couple)

D2. the first couple whose exchange of locations leéadscost reduction (first couple)
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A combination of C1 and D1 increases solution dqudlut also computational time. A common
method is to start with C2 and skip to C1 as sosrih@ solution is reasonably good. (A
combination of C1 and D2 is equivalent to the 2+opthod which we use to solve TSP).

A well-known (heuristic) method is CRAFT which edgdin case of OE with similar place
requirements) a combination of C1 and D1 (this metill be introduced later in this chapter in
the context of OE with unequal place requirements).

In case of random choice (C3 and D2) we quite offtash good results. Especially the fact that
sometimes the best exchange of all exchanges wiaicd been checked leads to an increase of
costs is no disadvantage, because it reducessth&orbe trapped in local optima.

The basic idea and several adaptions/combinatibAs®, C, and D are found in literature.

2.2.4. .Umlaufmethode*”

-Umlaufmethode” is one of the numerous heuristitsoly combine the idea of starting heuristics
and imporvement methods. This method consistseofaliowing components:

Initialization (i = 1):
Those OE having the maximum sum of material flow][A assigned to the centre of locations
(i.e. the location having the minimum sum of disesto all other locations [B1]).

Iterationi (i =2, ..., n): assign OH

Part 1: (Selection of OE and of free locatjon

e select those OE with the maximum sum of mater@ad/flo all OE assigned to the core [A3]

e assign the selected OE to a free location so tleastim of transportation costs to the core
(within the core) is minimized [B3a]

Part 2: (Improvement step after iteration i3:4

e check pair wise exchanges of the last-assigned @Eal other OE in the core [C2]

e if an improvement is found, the exchange is conetiieind we start again with Part 2 [D2].

The method ends with the finalization of iteratios n having assigned all OE.

Example, at first without improvement step (onlytP3:

Initialization (i = 1): A B C
E is the centre D E 3 F
We assign OE 3 to the centre (E) G H I
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Sequence of assignments:

i= |1 2 3 4 5 6 7 8

OE |3

1 |0

2 3 I = 3: 2 has the max. mat.fl. to the core (3, 5)
3 1 I = 1: at first we assign 3

4 3 1=5

5 |5 I =2: 5 has the max. mat.fl. to 3
6 2 I=6

7 10 i=4

8 3 =7

9 4 =8

Iteration i =2 (Part 1): the maximum material flow to the core (3) is frork 6.
Distancedse = dpe = dre = dye = 1 is equally minimak> we select D

= In stepi = 2 we assign D-5.
[teration i =3 (Part 1): the maximum material flow to the core (3, 5) iIfr®E 2.

Find a locationX so that gelfbs + dplibs = dkel3 + dip2 is minimal (only A, B, G or H)

X=A hel3 + dap 2 = 23 + 12 = 8
X=B ke3 + dep 2 = 13 + 22 = 7
X=F e3 + drp 2 = 13 + 22 = 7
X=G ke + depZ = 23 + 12 = 8
X=H el +dupp2=13+22=7 B, F or H= B is chosen

= In Step i = 3 we assign B-2.
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Iteration i =4 (Part 1) the maximum material flow to the core (2, 3, 5resn OE 7.

Find a locationX so thatygf4s + dxpffs + dxgff> = dxel0 + dxp2 + dxgld is minimal
in the map we see that A is to be considered
= in iterationi = 4 we tentatively assign A-7.

(Part 2) try to exchange A with E, B or D and calculate ttwsts of these assignments:

From Part1: E-3,D-5,B-A-7 Cost = 15+13+20+22+12+14 = 18
E-3,D-5A-2,B-7 Cost = B+23+10+12+22+14 = 21
E-3,A-5,B-2,D-7 Cost = [B+13+10+12+12+24 = 25

A-3, D-5, B-2, E-7 Cost =B+13+20+22+12+14 = 18
An exchange of A and E is possible but does nad eaa cost reduction. Thus, we do not
conduct this exchange but take the solution detexchin Part 1.

After 8 iterations (without part 2) we end up wilie solution from above with total costs = 54.

Inclusion of part 2eads to an exchange of the last-assigned OE @I 4 in iteration 8. By
this exchange we increase total costs to 51.

While a manual calculation of larger problems isviobsly quite time consuming an
implementation and therefore computerized calouteits relatively simple.

1. Appendix A: Methodological Basics

Complexity

Almost all optimization problems occuring in pration and logistics can be solved either
exactly or by applying heuristic methods. The s&yecof a solution method may depend on:

e Software availability
e Cost-benefit

e Problem complexita

Even if we know adequate (time consuming) exachoug we are going to apply heuristic
methods if we do not have adequate software avaitaicosts (installation, personnel
instruction, etc.) exceed the expected benefit.

On the other hand we know a number of combinatpriablems, which are classified to be ;NP
hard“, which indicates the assumption that the companal effort for solving the problem will
not increase polynomial with the problem dimensilarcase of real-world applications with the
according problem size we face unacceptable cortipugh times, even for high performance
IT-systems, regularly.
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LP-Problems (average case) are to be solved witmpmial effort, since the number of
simplex-iterations increases linearly with the nembf constraints (and each iteration causes
quadratic effort).

LP-Problems with integer variables usually are edlisy applyinga Branch and Bound (B&B)

method, where a common LP-model is solved in echtion. Here the number of iterations

increases exponentially with the number of integerables. Thus, these problems cannot be
solved with polynomial effort.

For some problem classes (e.g. transportation @nady| (linear) assignment) due to their
problem structure integer/binary property of theisien variables is guaranteed automatically
leading to a low problem complexity.

Some problems with integer/binary variables canu$ing special exact methods) be solved with
polynomial effort, anyway.

Referring to heuristic methods we usually distisgubetween:

e Starting heuristics (quick generation of a feasgakition)
e Improvement heuristics (start with a feasible soluand try to find a better one)

e Combinations of starting and improvement heuristics

We use “general purpose”-heuristics or metaheasigg.g. Simulated Annealing, Tabu Search
or Genetic Algortihms) in order to leave local opdi during improvement steps.

Costs and distances

The majority of problems being dealt with duringstbourse will be solved based on costs and/or
distances;. In most cases costs are determined based on tgigknical parameters (machine
setup,..) or distances (e.g. distance betweentalged,)). In the following we are going to
introduce three common distances:

n X2
Euclidean distance: d(x,y) = Z(Xi ‘Yi)z

4
: y
i=1
(Straight line distance between two points / ¥

andy) X

Manhattan distance: X2

n A
dex,y) = | i) Ty /
i=1 \ 1 %t

(The distance between two points measure( X
along axes at right angle)
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}._\

(Drilling plates, movement of cranes)... Q Ys Y2

In most cases we know the distance between evepleof adjacent nodes (locations,
customers,...). For determining the distance betveegrtwo nodes within the network, we have
to solve a shortest path problem.

Basics on Graph Theory

A graph consists of points known a®des (vertices)which are connected with each other using
lines (edges, arcs).

Graph:

A chain between nodesandj is a sequence of edges connecting these two nagesh is a
chain where the direction is clear (oriented); mieel edges are usually calledows (or arcs).

D)
Chain from A to D: @

A cycleis a chain that connects a node with itself, whdeedge is traversed more than once.

(A
Cycle: @
Zyklus 6

A graph isconnected if for each pair of nodes there exists a path eoting these two.

A treeis a connected graph without cycles.
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Tree:

One of the theorems in graph theory indicatesdtgph withn nodes is connected if it
contains K-1) nodes, but no cycles.

kein Baum wegen Zyklus OAB

No tree (due to cycle OAB):

The edge of graph directed or is anarrow if an orientation is given (one way street)difected
graph contains only directed arcs. Amdirected graph contains only undirected edgesmixed
graph contains both directed and undirected edges.
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