
Exercise 8

Parts 1 to 12 have to be produced on 6 machines A; B, C, D, E, and F.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1	1	1	1	1							1
В	1						1	1	1	1		
С	1	1	1	1	1						1	
D						1	1	1	1	1	1	
E		1	1	1	1	1						
F						1	1	1	1	1		1

a) Show that this yields the following graph of common parts:

b) Assume that the graph of common parts is as given above. Let the initial clustering of machines in 2 groups be {A, B, C} and {D, E, F}. Using the Kerninghan-Lin algorithm find an improved clustering of the 6 machines in 2 groups.

Excercise 9

Fort he final assembly of a product 10 jobs need to be done (A, B, ..., J). The following table contains the processing times (in minutes) and precedence conditions for all jobs.

Job	Precedessor	Proc.time	
A	-	7	
В	-	8	
С	-	7	
D	A, B	6	
E	C, D	12	
F	D	8	
G	E	10	
Н	E	12	
Ι	F, H	8	
J	G, H	9	

a) Determine the cyle time if production is done in 2 working shifts, each of them taking 8 hours, and an output quantity of 50 items.

b) Apply the following priority rules for assigning jobs to stations (apply rule 1 first, rule 2 is only to be applied in case of equality obtained with rule 1

Rule 1: Choose jobs according to monotonuously increasing upper bound for the number of stations needed for job j and all his precedessors.

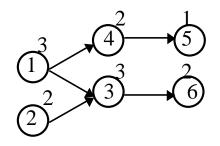
$$\mathbf{PV}_{j} \coloneqq \mathbf{E}_{j} = \left[\left(t_{j} + \sum_{h \in V_{j}^{m}} t_{h} \right) \middle/ c \right]$$

Rule 2: Decreasing positional weight ("Positionswert")

c) Calculate the system's efficiency.

Exercise 10

Models A, B and C are to be produced by mixed-model assembly. The following table contains the precedence conditions and processing times for all jobs of all models:


	А		В		C		
Job	Precedessor	t _{jA}	Precedessor	t_{jB}	Precedessor	t _{jC}	
a	-	4	-	3	-	1	
b	а	7	а	1	-	3	
с	а	2	d	2	d	3	
d	а	1	-	5	а	2	
e	b, d	5	b, c	2	а	1	
f	c, e	1	e	4	b, c, e	3	

We have to produce 3 units of model A, 1 unit of model B, and 2 units of model C. The planning horizon is 60 time units.

Assign jobs to stations by applying the heuristic of Thomopoulos ($\lambda = 0$).

Exercise 11

Consider the following precedence graph for an assembly line. The numbers above the nodes (operations) indicate the durations.

a) What is the minimal possible cycle time, if exactly 2 stations should be built. Explain why!

b) Let the cycle time be c = 5. Find the optimal assembly line balancing using dynamic programming (Jackson).