4.4 Exact Methods for Assembly Line Balancing

We have seen in the beginning of this chapter, that an Assembly Line Balancing (ALB) problem can be represented as a binary LP. Smaller instances can be simply solved by using a general purpose LP-solver. For very large instances of this np-hard problem, heuristics need to be used - see the previous sections.

Since ALB problems are tactical problems that are solved only now and then, the results need not be available very soon and computation time can in principle be quite long.

Hence, a number of tailored exact methods have been developed for ALB problems. The most well known ones are based on Dynamic Programming (DP) and Branch & Bound (B&B). In the next subsections we present two such algorithms for Alternative 1, i.e. where the cycle time is given and the number of stations has to be minimized.

4.4.1 Jackson Algorithm (Dynamic Programming, Decision Tree)

This was the first and simplest exact method that was specially designed for ALB problems. Later improved algorithms have been suggested but the dominance rules are still of general relevance.

4.4.1.1 Construction of a Decision Tree

The individual stations of the assembly-line are considered one by one.

In the first stage one generates all possibilities for the allocation of the first station, where one considers only maximal stations (i.e. no additional operations can be added). Hence, one obtains a number of different states, which are described by the operations already assigned to station 1.

Step from stage k-1 to stage k:

The state in stage k-1 represents all operations already assigned to stations 1 to k-1 (not only k).

In stage k, for each such state in stage k-1, one forms all maximal stations k and obtains the corresponding states in stage k.
As soon as a state is reached where all operations have been assigned, the optimal solution is reached and k is the minimal number of stations.

As usual in DP, the allocations of the individual stations can be determined by backtracking.
The problem can also be considered as a shortest path problem with nodes being the states and the edges representing the allocations of the stations. The starting node is the empty set and the terminal node represents the situation where all operations are assigned.

Jackson Algorithm
Given:
c
… cycle time

A
= {1, … , n} … set of all operations with
tj
... durations tj (c;
Precedence graph (i.e. set of all immediate predecessors V(j) or successors N(j))
Notation used:
k
… Stage (station number)

Zk
... state in stage k; set of all operations that have already been assigned in stages/stations 1 to k-1, i.e.. Zk (A
L1
... list of all states in stage k-1

L2
... list of states in stage k

Ek
... set of possible alternative assignments to station k
Sk
... current assignment to station k in stage k
Start:
L1:= < {}];
(empty set - nothing assigned yet)
Iteration k = 1, 2, ... :
L2:= <]; ...
(start with an empty station)

while L1 (<] do
(as long as not all states of stage k-1 have been considered)

begin
choose and remove the first element Zk-1 of L1:

construct the set Ek of all possible allocations of station k:

[image: image1.wmf](

)

(

)

(

)

(

)

E

k

k

k

k

1

k

k

1

k

j

j

S

:

S

S

A

Z

j

S

 gilt V

j

Z

S

t

c

k

=

Í

-

Ù

"

Î

Í

È

Ù

£

æ

è

ç

ç

ö

ø

÷

÷

ì

í

ï

î

ï

ü

ý

ï

þ

ï

-

-

Î

å

;

(i.e. all subsets of the set of not yet assigned operations A - Zk, such that all predecessors are already assigned and total workload does not exceed cycle time)

eliminate non maximal assignments:
(dominance rule 1)

[image: image2.wmf](

)

{

}

E

E

E

k

k

k

k

k

k

k

:

\

S

S

mit S

S

=

$

¢

Î

Ì

¢

;

while Ek ({} do
(add the new stations k to the states in list L2)

begin

select and remove an element Sk of the set Ek;

Zk := Zk-1(Sk;
(add Sk to the previous state Zk-1)

add Zk to list L2;

if Zk = A then begin m: = k; stop end;
(all operations assigned)

end;

end;

L1: = L2;

Result: optimal assignment with m stations found.
	
Example: c = 4

precedence graph

[image: image3.wmf]

2

1

3

4

5

1

3

2

3

2

	A possible decision tree is indicated below.

The columns represent the stages,
the nodes correspond to the possible states,
the arrows correspond to the possible station allocations,

The numbers in the nodes indicate a possible sequence in which these states are generated (sequence is arbitrary within a stage).

	If the operations are considered in sequence 1, 2, 3, 4, and 5 the following optimal solution is obtained:

	
[image: image4.wmf] {2,4} 3

{3,5}

 6

 {1} 1

 0

 {4, 5} 4

 {2} 2

 {1} 5

 1 2 3

 Station

	If the operations are considered in the opposite sequence (5, 4, 3, 2, 1), one obtains the following decision tree with the first optimal solution on node 9,

i.e. it depends on the sequence when the optimal solution is found in the last stage. The states in the previous stages are however not affected by the sequence.
	
[image: image5.wmf] {4, 5} 6

 {1} 3

 {2} 1

 {3}

7

 0

 {4, 5} 4

8

 {1} 2

{2}

 {2,4} 5

{3,5}

 9

 1 2 3

 Station

4.4.1.2 Dominance rules

Clearly, the decision tree can become very large in case of many operations.
Hence, one tries to reduce the size of the tree by deleting some of the branches as soon as possible.

Since (usually) just one optimal solution is required, all sates and stations cen be ignored that are dominated by some other station with the same starting state Zk-1.

A state or station is dominated by another one, if the former cannot lead to a better solution than the latter.

The first dominance rule we have already considered in the algorithm:

Dominance rule 1: station assignment Sk with starting state Zk-1 is dominated by station assignment S'k with the same starting state, if Sk (S'k.
Example: In the above example in stage 2 the station assignments S2 = {2} and S2 = {4} are dominated by S'2 = {2, 4}.

For the next dominance rules we need the following definition:

Für weitere Dominanzregeln definieren wir Nachfolgermengen von Knotenmengen J wie folgt:

[image: image6.wmf](

)

J

j

N

J

j

J

N

-

Î

=

U

)

(

 ... set of all immediate successors of all operations in set J.
With this, we can formulate:

Dominance rule 2: station assignment Sk with starting state Zk-1 is dominated by station assignment S'k with the same starting state, if the following holds:

[image: image7.wmf]å

å

Î

£

Î

2

1

J

j

t

J

j

t

j

j

 and
[image: image8.wmf](

)

(

)

2

1

J

N

J

N

Í

where
J1 = Sk - S'k and J2 = S'k - Sk

Because of the first condition, station S'k has more workload assigned (less idle time).

The second condition guarantees that all operations that depend on J1 also depend on J2. This means, that all successors of J1 are only available, if all operations in J1 and J2 have been assigned.
Choosing station assignment S'k instead of Sk leads to a station that has not more idle time and represents not more restrictions for the planning in the subsequent stages.

The application of this rule can be time consuming. Hence, it is sometimes only applied in case of
| J1| = | J2| = 1.
It is possible that two station assignments dominate each other. In this case one of them can be dropped while the other must be kept.
	Example above: Because of dominance rule 2 station
S1 = {2} is dominated by S'1 = {1} in stage 1, since

· S'1 has more workload assigned (less idle time) than S1, t2 < t1 and
· N(S1 - S'1) = N({2}) = {3}
N(S'1 - S1) = N({1}) = {3, 4},
i.e. N(S1 - S'1) (N(S'1 - S1)
Hence the partial tree starting in node 1 can be eliminated.
In the same way, in stage 2 and Z1 = {2} the possible station assignment S2 = {4, 5} is dominated by S'2 = {2, 4}.
	
[image: image9.emf] {4, 5} 6 {1} 3 {2} 1 {3} 7 0 {4, 5} 4 8 {1} 2 {2} {2,4} 5 {3,5} 9 1 2 3 Stat ion

Remark: The following example shows, that condition N(J1) (N(J2) is actually needed and that a better workload alone does not guarantee dominance:
	Example:
c = 40

[image: image10.wmf]

30

 30

1

4

21

2

 10

 10

 10

21

5

6

 7

3

	Although t1 (t2 and t1 (t3, the stations S1 = {2} and S1 = {3} are not dominated by S'1 = {1}.

This is because J1 = {2} and J2 = {1} so that
N(J1) = {5} is not contained in N(J2) = {4}.

The optimal solution is
S1 = {2}, S2 = {3, 5}, S3 = {1, 6}, S4 = {4, 7}
It is only reached if S1 = {2} is chosen in the first stage. All other states in stage 1 yield a solution with 5 stations.

The next dominance rule extends dominance rule 1 from stage k (operations assigned in stage k) to state k (set of all operations assigned in stages 1 to k):

Dominance rule 3: A state Zk is dominated by state Z'k in the same stage k, if Zk (Z'k.
	Example: In the above example
state 3 represents the (assigned) operations {1,2} while state 5 represents operations {1, 2, 4}.

Because of {1, 2} ({1, 2, 4} state 3 is dominated by state 5.
If with 2 stations already operations 1, 2, and 4 can be assigned, then it makes no sense to keep a state where with 2 stations only operations 1 and 2 are assigned.

States 6 und 8 are identical, because they both represent the operations {1, 2, 4, 5}. One of them could be deleted.
	
[image: image11.emf] {4, 5} 6 {1} 3 {2} 1 {3} 7 0 {4, 5} 4 8 {1} 2 {2} {2,4} 5 {3,5} 9 1 2 3 S tation

The next dominance rule extends dominance rule 3 from stage k (operations assigned in stage k) to state k (set of all operations assigned in stages 1 to k):

Dominance rule 4: A state Zk is dominated by state Z'k, if for J1 = Zk - Z'k and J2 = Z'k - Zk holds:
[image: image12.wmf]å

å

Î

Î

£

1

2

J

j

J

j

j

j

t

t

 and
[image: image13.wmf](

)

(

)

2

1

J

N

J

N

Í

	Example: In the above example states 7 and 8 dominate each other and one of them could be deleted.
	
[image: image14.emf] {4, 5} 6 {1} 3 {2} 1 {3} 7 0 {4, 5} 4 8 {1} 2 {2} {2,4} 5 {3,5} 9 1 2 3 S tation

Rules 2 and 4 can be quite time consuming and it is not always clear whether they lead to a reduction in computation time.

4.4.1.3 Pinto Heuristic
As already mentioned, the ALB problem can be considered as a shortest path problem. We have seen that the complete graph need not be developed since one can stop as soon as in one node all operations have been assigned, and also because of pruning the tree by dominance rules.
However, the graph/tree will still be very large. Therefore a heuristic has been developed that is based on this shortest path problem but only considers a subgraph (at the cost of loosing the guarantee of optimality).

Heuristic by Pinto
1. Find some good (and feasible w.r.t. precedence) orderings of the operations using e.g. different priority rules

2. For each of these orderings (permutations) (jl,. ... , jn) of operations, define nodes (states)
Z0 = {}, {jl}, {jl, j2}, ... , Zend = {jl, ... , jn}.
3. Draw an arrow from node Z to Z' if Z' - Z represents a feasible assignment of a station in the sense that cycle time is not exceeded:
[image: image15.wmf]å

-

¢

Î

£

Z

Z

j

j

c

t

4. In the resulting graph find the shortest path from Z0 = {} to Zend = {jl, ... , jn}.

Often this heuristic finds improved solutions compared to the application of simple priority rules. However there is no guarantee that the optimal solution is found.
Example: Reconsider the above example and choose the two orderings (2, 1, 4, 5, 3) and
(1, 4, 5, 2, 3). With c = 4 one obtains the following graph:
[image: image16.jpg]

The shortest path (minimum number of arrows) is shown in bold. By coincidence the optimal solution is reached.
4.4.2 The B&B algorithm by Johnson von (FABLE)

The above DP algorithm can be considered a "breadth" search in the sense that all nodes in a certain stage are considered, before proceeding to the next stage. This way, the first feasible (complete) solution is already the optimal one. If the algorithm is stopped because of time restrictions no feasible solution is available.

The B&B algorithm by Johnson tries to search the corresponding tree in the sense of "depth" search by trying to reach leaves of the search tree (complete solution) soon. It is also known as FABLE (Fast Algorithm for Balancing Lines Effectively).

Like in all B&B algorithms it is important to keep the tree small by appropriate pruning. In addition to the above dominance rules, also bounds are used.

First we describe the branching process, and then we will discuss the different ways of pruning the tree.
4.4.2.1 Branching Process
In the starting node 0 no operations have been assigned yet.

In each iteration an additional operation is assigned (or in a backtracking step an operation is removed).
A new station is opened whenever no further operation can be assigned to the previous one (because of cycle time and precedence). Hence, we again only consider maximal stations (compare dominance rule 1)

In B&B, there are always 2 possibilities last bound (the last node is extended) or best bound (the most promising node is extended). Here the last bound approach is chosen, i.e. in a kind of LIFO-strategy always the last generated subset is investigated further.

In order to obtain a good first solution, the operations are ordered according to some priority rules. In FABLE, the sorting is done (considering precedence relations) by the rules:

1. sort according to decreasing operation times tj (i.e. allocate long operations first)
2. in case of a tie, use decreasing number of immediate successors
3. in case there is still a tie choose randomly
	Example:

Cycle time c = 4

	
[image: image17.emf] 2 1 3 4 5 1 3 2 3 2

	The graph on the left is the precedence graph. The nodes are the operations.
This gives the ordering (1, 2, 3, 4, 5):
The first two candidates (ready to be assigned) are 1 and 2. Because of rule 1 we select 1.

Then we could assign 2 or 4. Rules 1 and 2 do not help, so we select 2 by rule 3, etc.

The algorithm starts like a normal priority rule method, i.e. the operations are assigned in the selected ordering. If some operation cannot be assigned anymore to a station, because the cycle time is exceeded, on tries to insert the next operations in the list.
	[image: image18.png]Station 1 Station 2 Station 3

	First, station 1 is built as {1}. No other operation can be assigned anymore.

In the next station we first insert operation 2. Then only 4 is ready to be assigned (3 would not fit!). So station 2 is completed.
Finally 3 and 5 enter station 3.

We have found a "leaf" of the B&B tree:
Feasible solution (3 stations): {1}, {2, 4}, {3, 5}

_1303135335.doc
����	 {2,4} 3 {3,5} 6

��� {1} 1	

��� 0	 {4, 5} 4

��� {2} 2	

	 {1} 5

 1 2 3

 Station

_1303139973.unknown

_1303158485.unknown

_1303158693.doc

 {4, 5} 6

 {1} 3

 {2} 1
 {3} 7

 0
 {4, 5} 4 8

 {1} 2
 {2}

 {2,4} 5 {3,5} 9

 1 2 3

 Station

_1303159876.unknown

_1303216558.doc

 2 1

 3
4
5

1
 3

 2
3

2

_1303158739.doc

 {4, 5} 6

 {1} 3

 {2} 1
 {3} 7

 0
 {4, 5} 4 8

 {1} 2
 {2}

 {2,4} 5 {3,5} 9

 1 2 3

 Station

_1303158494.unknown

_1303157978.doc

 {4, 5} 6

 {1} 3

 {2} 1
 {3} 7

 0
 {4, 5} 4 8

 {1} 2
 {2}

 {2,4} 5 {3,5} 9

 1 2 3

 Station

_1303139696.unknown

_1303139956.unknown

_1303135336.doc
��		 {4, 5} 6

����	 {1} 3	

��� {2} 1	 {3} 7

����� 0	 {4, 5} 4 8

��� {1} 2	 {2}

��	 {2,4} 5 {3,5} 9

 1 2 3

 Station

_1303135354.doc
	 30	 30

���	1	4

	 21

�����	2	 10	 10	 10

���	 21	5	6	 7

�	3

_1303135333.unknown

_1303135334.doc
		 2 1

����	 3	4	5

��	1	 3

��	 2	3

�	2

_1303135332.unknown

