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Abstract

Balancing assembly lines is a crucial task for manufacturing companies in order to improve productivity and min-
imize production costs. Despite some progress in exact methods to solve large scale problems, softwares implementing
simple heuristics are still the most commonly used tools in industry. Some metaheuristics have also been proposed and
shown to improve on classical heuristics but, to our knowledge, no computational experiments have been performed on
real industrial applications to clearly assess their performance as well as their flexibility. Here we present a new tabu
search algorithm and discuss its differences with respect to those in the literature. We then evaluate its performance
on the Type I assembly line balancing problem. Finally, we test our algorithm on a real industrial data set involving
162 tasks, 264 precedence constraints, and where the assembly is carried out on a sequential line with workstations
located on both sides of the conveyor, with two possible conveyor heights and no re-positioning of the product. We
discuss the flexibility of the metaheuristic and its ability to solve real industrial cases.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Balancing assembly lines is a difficult combina-
torial optimization problem arising frequently in
manufacturing. There are two versions of the
problem. Assuming a line of identical assembly
workstations and a set of tasks to be processed,
ed.
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the Type I simple assembly line balancing problem
(SALBP-I), as described by Scholl [16], consists in
finding an assignment of tasks to workstations
such that the required number of workstations is
minimized. The problem is constrained by a set
of precedence relations between the tasks and by
a given cycle time, which corresponds to the max-
imum work time available per workstation. The
Type II simple assembly line balancing problem
(SALBP-II) consists in allocating tasks to a given
number of workstations in order to minimize the
cycle time, i.e. the maximum work time of any
workstation [12]. Both versions of the problem
are NP-hard [10].

The real industrial settings however often differ
significantly from the theoretical problem. For in-
stance, it can be observed that the cycle time is
generally treated in a more flexible manner. In-
deed, since operation times are based on standard
measures (average time for an average worker to
perform a given task), occasionally one could
intentionally overload a workstation and assign
to it a fast employee. Also, practical applications
often present other specifications such as task
incompatibilities [13], two-sided assembly lines
[3], etc. Such particularities are very difficult to in-
clude in mathematical models and generally in-
crease significantly the complexity of the problem
to be solved. This can explain why they are gener-
ally not considered in the literature.

The assembly line balancing problem has been
extensively studied. Ghosh and Gagnon [7] found
more than 150 papers published on this topic in
their comprehensive survey. Salveson [15] was the
first to present a mathematical formulation in
1955. Early work focused on the development of
good heuristics for industrial problems. Arcus�
extensive work on industrial balancing problems
led him to the development of COM-SOAL, a
computerized software using what we refer to as
‘‘priority-based’’ heuristics [2]. Such heuristics sim-
ply dispatch available tasks––i.e. those for which
all predecessor tasks have already been assigned
to a workstation––according to a predefined prior-
ity rule such as the ‘‘largest task first’’. Typically,
different dispatching rules are tried on the same
balancing problem since the best rule depends on
the application problem [4]. COMSOAL then tries
several random assignments to generate additional
balancing solutions. Among all the generated solu-
tions, the best one is usually of relatively good
quality.

The research performed in the 70s and 80s fo-
cused almost exclusively on the development of ex-
act methods to solve the basic assembly line
problem. According to a recent computational
study due to Scholl and Klein [19], SALOME
(developed by Scholl and Klein [18]) is considered
as the best-performing exact algorithm for this
problem. However, despite such significant ad-
vances at the theoretical level, most algorithms
used in practical settings resort to heuristics in-
stead of exact methods (see [7]). This is due to
the fact that the latter do not require complex
computer coding or software maintenance while
providing what is perceived in industry as good en-
ough solutions. Most papers on the balancing
problem in industrial settings are extensions of
the classical heuristics developed by Arcus.

Several metaheuristic approaches have also
been developed for this problem. Anderson and
Ferris [1], and Rubinovitz and Levitin [14] present
two different genetic algorithms to solve the
SALBP-I. They both conclude on the good per-
formance of their heuristic, but this is difficult to
assess since they did not test them on standard
problem sets. Gonçalves and Raimundo [9] present
a hybrid heuristic where a genetic algorithm de-
fines priorities to tasks which are then assigned
to workstations by a priority rule. Scholl and
Voß [17] present basic tabu search (TS) algorithms
to solve the assembly line balancing problem of
Types I and II. Chiang [6] proposes another TS
metaheuristic on the SALBP-I. Although both
methods correspond to rather simple versions of
TS, they obtain good results on classical data sets.
However their results also show that there is still
room for improvement.

In this paper we propose a new TS algorithm to
solve the Type I standard assembly line balancing
problem––i.e. an assembly line for a single product
with deterministic task length. This procedure ex-
plores two complementary neighborhoods and
integrates several advanced features of TS to
enhance its efficiency, robustness, and adaptabil-
ity to real industrial settings. In particular, the
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algorithm has been extended to tackle the frequent
situation arising when the assembling of large
products requires that operations be performed
on both sides of the conveyor and at different
(i.e. two) possible heights, for instance in the home
appliance industry. Of course, re-positioning the
product on the line would eliminate this need,
but the technology necessary for such added flexi-
bility is often too expensive for the potential bene-
fits. Other common practical constraints like task
grouping or task separation are not handled pres-
ently by the algorithm, but we believe it could eas-
ily be modified to account for them.

The rest of the paper is organized as follows.
Section 2 presents the TS algorithm. In Section 3
we analyze the performance of our procedure on
the SALBP-I. We then assess the adaptability of
the algorithm to practical settings by solving an
industrial problem with several complicating char-
acteristics in Section 4. Section 5 concludes the
paper.
2. A tabu search procedure for the SALBP-I

TS is a generalized local search procedure that
uses information on the history of the search proc-
ess to overcome the limitations of local optimality.
It starts from an initial solution and iteratively
moves to a neighbor solution which either im-
proves on the previous solution or not. In the later
case, the search process records some information
on the move just made to prevent the method from
reversing it right away and start cycling (see [8]
and [20] for a detailed description of TS). Before
presenting our TS algorithm, we will first review
existing TS procedures found in the literature.
The following notations and definitions will be
used throughout the remainder of the paper:

C cycle time;
tj execution time of task j = 1, . . . ,n;
n number of tasks;
m number of workstations in the assembly

line;
Sk set of tasks which are currently assigned

to station k = 1, . . . ,m;
t(Sk) total working time of station k given a set
of tasks Sk.

2.1. Existing TS procedures

The TS procedures reported in the literature use
two different approaches to tackle the SALBP-1
line balancing problem. Scholl and Voß [17] pro-
pose an indirect approach that consists basically
in solving iteratively several SALBP-II with an
increasing number of workstations until a solution
that satisfies the target cycle time C is found. They
proceed as follows: for a given number of worksta-
tions m 0, m0 < ð

PntjÞ=C, they find an initial solu-
tion having a cycle time C 0 larger than C. Then,
they apply a TS algorithm in which they compute
max(t(Sk))––i.e. the cycle time of the current solu-
tion––at each iteration. An improvement is re-
corded whenever a reduction of this cycle time is
achieved. The TS iterates until the target value of
C is reached. If the solution cannot be improved
enough to meet the target cycle time C, another
initial solution is generated with a cycle time C00

slightly smaller than C 0 and one additional work-
station (m00 = m 0 + 1). The TS is then applied
again, starting from this new initial solution. This
procedure is repeated until a solution with a cycle
time smaller or equal to C can be found. With their
approach, the authors were able to find better
solutions than the best known heuristics on stand-
ard test data. However, the method is complex and
extensive knowledge about the heuristics used to
generate initial solutions is needed in order to
implement the proposed search strategies.

Chiang [6] proposes a more direct approach. He
starts with an initial solution found with the right
cycle time C, and then applies a TS procedure that
tries to reduce the number of workstations used.
Implementation of this strategy requires the use
of a more elaborate objective function since the
natural objective function of the SALBP-I does
not provide much information. Indeed, the num-
ber of workstations used in a given solution is
not sufficient to evaluate its potential for improve-
ment nor to compare the quality of two competing
solutions. To overcome this difficulty, the author
makes the observation that, for a given number
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of workstations m, a solution improves if more sta-
tions are full. He proposes the use of the following
objective function:

max
Xm
k¼1

X
j2Sk

tj

 !2

: ð1Þ

He shows that this non-linear objective encour-
ages the transfer of tasks from workstations with
lesser loads towards those with higher loads, there-
fore increasing the chances of emptying some
workstations. The procedure starts with a solution
found with a priority-based heuristic. It then tries
to improve on this solution by considering task ex-
changes between pairs of stations that keep the
solutions ‘‘feasible’’, i.e. solutions always satisfy
both all precedence constraints and the cycle time
restriction, t(Sk) 6 C, "k. The method finds rather
good solutions when compared to optimal ones
on a set of classical test data (also solved in
[17]). However, no information is provided on
how much improvement the TS procedure pro-
vides with respect to the best solutions obtained
with priority-based algorithms or to the initial
solutions.

2.2. A new TS algorithm

The new TS algorithm we propose is related to
that in [6] but differs from it on two major aspects:
(1) it incorporates an intensification–diversifica-
tion framework based on the use of two different
and complementary neighborhoods and (2) it uses
a redefinition of the solution space and the objec-
tive function in order to allow the algorithm to
visit infeasible solutions (i.e. where the load of
some workstations exceeds the cycle time C) while
searching for better solutions.
2.2.1. Neighborhood structures

It is clear that the solution is improved when-
ever a station becomes full or empty. We agree
with [6] that while trying to attain such a reduction
in workstations, half-full workstations should be
filled up. But we can also improve things if we
can reduce the number of half-empty worksta-
tions. If the number of stations that are either
almost full or nearly empty increases then there
is a better chance that a station could be emptied
at the next iteration. We therefore built our
approach around the definition of two comple-
mentary neighborhoods: Nh1 that focuses on
reducing or increasing the half-empty worksta-
tions (i.e. inducing a sort of diversification effect
in the search) and Nh2 that intensifies search on
near-empty workstations in order to attempt to
empty them completely.

Nh1 is a two task exchange process. At each
iteration, it selects the workstation whose work-
load is closest to the 50% mark. It then considers
systematically all possible exchanges between each
of the tasks in the selected workstation and the rest
of the tasks assigned to other workstations. The
improvement in the objective function value is
computed for each of these possible moves and
the best non-tabu exchange (i.e. the one leading
to the best objective improvement or the least
degradation) is implemented. Although the num-
ber of possible exchanges seems to be huge
(jSkj · (n � jSkj), a priori), most of them are in fact
not feasible because of the precedence require-
ments. To maximize the probability that an ex-
change between a given pair of tasks is feasible,
we start exploring exchanges with the stations clos-
est to the selected one and extend away towards
more distant stations until precedence constraints
are violated. This is done in both directions,
upstream and downstream. The best feasible ex-
change is then implemented. Algorithm 1 illus-
trates Nh1.

Algorithm 1. Explore Nh1

1: Select target workstation Wki
2: k �1; violate 0
3: for l = 1 to 2 do

4: for each task s 2Wki do

5: j i � k

6: repeat

7: for each task s 0 2Wkj do

8: if exchange (s!Wkj,
s 0 !Wki) is feasible then

9: evaluate exchange

10: else

11: violate 1
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12: j j � k

13: until violate = 1 and 0 6 j 6 m

14: k 1
15: Implement best exchange found

Nh2 is a task move process whose purpose is to
empty underloaded workstations. At each itera-
tion it selects the emptiest workstation and tries
to transfer one of its tasks to some other worksta-
tion. Here again, the process considers all non-
tabu transfers and implements the one leading to
the best objective function improvement or the
least degradation. Since the number of tasks n is
generally much larger than the number of worksta-
tions m, the number of possible transfers in Nh2 is
clearly smaller than in Nh1 ((m � 1) · |Sk|, a pri-
ori). The same observation regarding the number
of feasible moves and how to structure the neigh-
borhood evaluation also applies here. Algorithm
2 illustrates Nh2.

Algorithm 2. Explore Nh2

1: Select target workstation Wki
2: k �1; violate 0
3: for l = 1 to 2 do

4: for each task s 2Wki do

5: j i � k

6: repeat

7: if transfer s!Wkj is feasible then

8: evaluate exchange
9: else

10: violate 1
11: j j � k

12: until violate = 1 and 0 6 j 6 m

13: k 1
14: Implement best transfer found

Since the choice of the station around which
the exchanges are centered is made according to
a rigid logic, the algorithm may ‘‘cycle’’ between
already visited solutions. This situation occurs de-
spite the tabu mechanisms because it lacks ‘‘new’’
moves. In order to prevent this from happening
too often we partially randomize the selection
process: a random draw decides if the workstation
is selected according to the deterministic ranking
rule––with a probability of 3/4––or if it is chosen
randomly among all non-tabu workstations.
2.2.2. Search strategy and tabu mechanisms
Given that the two neighborhoods are designed

to be complementary, the overall search strategy
uses both neighborhoods alternatively. The crite-
rion used to determine which one is in use depends
on the status of the search process. We always
start with Nh1 and explore it until a certain num-
ber of iterations have been performed without
improving the best solution found so far. Then,
we switch to Nh2 and, again, explore it until no
improvement can be made according to the same
criterion. The search continues by alternatively
exploring both neighborhoods until a global stop-
ping criterion is met, the maximum allowed com-
putation time in our case.

The algorithm includes two tabu mechanisms
which deal with tasks and workstations respec-
tively. A task becomes tabu when transferred from
its current workstation. The task remains tabu for
tabu_length_2 iterations, where tabu_length_2 in-
cludes a random factor to avoid cycles on the list.
A workstation becomes tabu when one of its tasks
is transferred to another workstation and remains
tabu for tabu_length_1 iterations. This means that
when a task is moved from a station, we forbid the
addition of a new task to this workstation but
allow the removal of other tasks from it.

From the technical standpoint, both mecha-
nisms are implemented via tabu tags that store
the iteration number until which the workstation
or task will be considered tabu. Whenever a work-
station or task is declared tabu, its associated tabu
tag is set to the value given by current_iteration +
tabu_length. When selecting workstations or tasks
during the algorithm search, only workstations or
tasks having a tabu attribute value lower than the
current iteration number are considered.
2.2.3. Solution space and objective function

As is the case for several other strongly con-
strained problems, the natural solution space of
the SALBP-I is difficult to explore effectively with
‘‘simple’’ moves as the ones described here above.
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Fig. 1. Enlarging the solution space through cycle time violation. (a) Infeasible solutions are forbidden. (b) Infeasible solutions are
allowed.
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Indeed, when restricting the search process to fea-
sible solutions, it can become very hard to escape
from local optima because of the presence of both
precedence and cycle time constraints. Consider
the situation illustrated by Fig. 1(a) where the
single task in the middle station (Wkn) cannot be
transferred to any of the neighbor stations without
violating the cycle time and any task in stations
Wkn� 1 and Wkn+1 cannot be moved to respec-
tively Wkn� 2 and Wkn+2 without violating the
cycle time or the precedence constraints.

A rather natural and easy way of unlocking the
situation is to allow the algorithm to temporarily
violate the precedence or the cycle time con-
straints. Allowing infeasibility in terms of prece-
dence requirements would destroy most of the
solution structure and therefore would probably
be very difficult to recover from. However, relax-
ing the cycle time constraint preserves the structure
of the solution and can be easily handled through
the use of a penalty term in the objective function.
As illustrated in Fig. 1(b), task(j) can now be
transferred to workstation Wkn� 1 from where
the search process can resume. The algorithm will
therefore search the solution space composed of
task assignments that always satisfy precedence
constraints but may violate the cycle time
requirement.

Clearly, when using such a penalization strategy
the penalty term should be proportional to the vio-
lation amplitude to prevent the search process
from straying too deep into infeasibility. We pro-
pose the following modified objective function:

max
Xm
k¼1

X
j2Sk

tj

 !2

� pdk; ð2Þ

where dk is the overload time for workstation k,
i.e. the amount of total working time exceeding
the cycle time limit, dk ¼ maxð0;

P
j2Sk tj � CÞ,

and p is a penalty coefficient.
The penalty coefficient p must be chosen care-

fully. If the penalty term is too large, then the algo-
rithm will almost never consider infeasible
solutions. If it is too small, the algorithm will not
be able to recover from infeasibility. However,
finding an a priori adequate value for p can be
quite difficult. In addition, a value that is adequate
at one moment of the search process may not be so
at another. To circumvent these difficulties, the va-
lue of p is changed dynamically according to the
search status. Initially, p is set to a large value to
discourage infeasibility. We then change its value
according to how frequently the algorithm imple-
ments infeasible moves. If during the last a itrera-
tions at least b infeasible moves have been selected,
then infeasibility is considered too attractive and p

is multiplied by a penalty increase factor cI. If the
current solution is feasible (i.e. no workstation is
overloaded) and no infeasible solutions have been
implemented during the last a iterations, then
infeasibility is considered too expensive and the



Table 1
Characteristics of the proposed TS algorithm

Objective function Quadratic function (see (2))
Stop criterion Number of iterations (20,000)
Tabu list A first tabu list for workstations (length = 5 iterations) and a second tabu list for tasks

of length 25 + s (s is random 2 {�5,5})
Move description Two types: exchange of two tasks with Nh1 and transfer of a single task with Nh2

Neighborhood switch After switch consecutive iterations without improvement of the best solution so far (switch = 50)
Move selection Best improvement
Strategic oscillation Allowed. A dynamic penalty is computed in the objective value when a station is overloaded
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value of p is therefore multiplied by a penalty de-
crease factor cD. Otherwise, p remains unchanged.
This type of automatic parameter adjustment
scheme for the penalty function can also be seen
as a form of strategic oscillation, a TS concept
meaning that the exploration of infeasible solu-
tions is alternately encouraged and discouraged.

After a preliminary phase of experiments, we
selected the following parameter values for our
implementation. We chose to initialize the penalty
coefficient with p = C2. We set the penalty increase
and decrease factors respectively to cI = 1.2 and
cD = 0.9. Finally, we selected the periodicity of
the adjustment scheme to a = 100 iterations and
set the threshold value to b = 10 infeasible moves.

As can be seen, this adaptive process is quite
conservative: the weight of the penalty increases
faster than it decreases and it will never decrease
as long as the current solution includes an over-
loaded workstation. The reason for this strategy
is that overloading some workstations may enable
the algorithm to empty other stations (and there-
fore close them). However, closing too many sta-
tions by overloading some workstations could be
dangerous since there might not be enough availa-
ble space in the remainder of the line to reallocate
the overloading tasks. Therefore, we allow over-
loading only for a limited number of iterations.

In order to provide a brief overview of our TS
algorithm, Table 1 presents its most important
characteristics and the values used for the remain-
ing parameters. A pseudo-code describing in more
details the structure of the algorithm is given in
Appendix A. We have implemented and tested this
approach on both standard problem sets for the
SALBP-I and on a new complex industrial case.
The results are presented in the next sections.
3. Computational results on standard problem sets

In order to test the performance of our algo-
rithm with respect to Chiang�s best implementa-
tion [6]––i.e. best improvement without task
aggregation––we have solved the 13 instances of
the Arcus 1 and 2 problem sets collected in [21].
All procedures were coded in C++ and the tests
were carried out on a Sun workstation UltraSparc
10 (100 MHz).

The first two columns in both sections of Table
2 show the characteristics of each instance, i.e.
cycle time C and optimal solution m*. Then the
experimental results obtained respectively by the
TS in [6] and by our procedure (identified by
LRS for Lapierre, Ruiz and Soriano) are reported.
The minimum number of stations is listed under
heading m and the running time under cpu. All
times are reported in seconds but, since they corre-
spond to different machines and programming
languages––the code in [6] is written in C and exe-
cuted on a VAX 6420 mainframe––care should be
taken when comparing them or trying to draw
conclusions from them.

LRS found all 13 optimal solutions whereas
Chiang�s best algorithm reached only 11 out of
13. Despite the evolution of computer speed, the
significantly shorter computation times of LRS
suggest that our neighborhood strategy is at least
as efficient as Chiang�s search. However, the small
gap between optimal and approximate solutions
for these instances does not allow one to clearly as-
sess the improvements provided by the proposed
algorithm. In fact, problem sets Arcus 1 and 2
seem to be somewhat too easy to solve: we also
got optimal solutions using the simple heuristic
COMSOAL [2].



Table 2
Performance comparison between Chiang�s TS and the pro-
posed TS algorithm (LRS)

Instances Chiang LRS

C m* m cpu m cpu

Arcus 1 data set (83 tasks)

5048 16 17 9.91 16 2.65
5853 14 14 46.62 14 3.10
6842 12 12 15.09 12 3.90
7571 11 11 6.77 11 4.3
8412 10 10 6.86 10 4.95
8898 9 9 61.09 9 5.20
10816 8 8 27.90 8 6.40

Arcus 2 data set (111 tasks)

5755 27 27 70.5 27 2.75
8847 18 19 63.21 18 4.01
10027 16 16 65.82 16 4.94
10743 15 15 54.46 15 3.78
11378 14 14 38.11 14 5.16
17067 9 9 73.95 9 8.31

Table 3
Results on Scholl and Klein [18,19] data set

C Init LRS Opt Gap

1394 53 51 50 1
1422 51 50 50 0
1452 50 49 48 1
1483 49 48 [47–48] 61
1515 48 47 [46–47] 61
1548 47 46 46 0
1584 47 45 44 1
1620 46 44 44 0
1659 45 43 [42–43] 61
1699 43 42 [41–42] 61
1742 42 41 40 1
1787 41 40 39 1
1834 40 39 38 1
1883 39 38 37 1
1935 38 37 36 1
1991 36 36 35 1
2049 35 35 34 1
2111 34 34 33 1
2177 33 33 32 1
2247 33 32 31 1
2322 31 31 30 1
2402 30 30 29 1
2488 29 29 28 1
2580 28 28 27 1
2680 27 27 26 1
2787 26 26 25 1
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Therefore, to have a better appraisal of the
performance of our method, we tested it on the
problem set suggested by [18,19]. This set is built
around the largest SALBP-I proposed in the liter-
ature which has 297 tasks and 422 precedence con-
straints. The 26 instances proposed in the set have
all the same tasks and precedence relationships but
different cycle times which are given under header
C in Table 3. For each of the instances, the table
reports the best solution found (in terms of work-
stations) by the priority-based heuristic described
in [11] that is used to generate the initial solution
of the TS algorithm under heading Init, the best
solution obtained by the TS procedure under
LRS, the optimal solution under Opt as reported
by Scholl and Klein, and the gap between the tabu
and the optimal solution (when the latter is
known) under header Gap. Note that whenever
the optimal solution is not known, bounds are pro-
vided (e.g. [47–48] for instance C = 1483). LRS
performed the 20,000 iterations on each instance
with individual computation times ranging from
13 to 21 seconds.

As can be seen from Table 3, LRS performs
very well, improving on the best heuristic solution
most of the times. The method finds three optimal
solutions and for all other instances it finds solu-
tions within one workstation of the optimal num-
ber (for a gap of less than 4%). The performance
seems to decrease somewhat as the cycle time in-
creases and, for cycle times of 1991 or longer, no
improvement is achieved over the initial solution.
However, it should be pointed out that the initial
solutions are already excellent which leaves little
room for LRS to stand out. In particular, for all
cycle times of 1991 and over except one, the heuris-
tic solution is just one workstation over the
optimum.
4. Testing on a real life industrial application

Industrial assembly line balancing applications
differ somewhat from the problem defined in Sec-
tion 1. Most of the times, these non-standard
assembly line balancing problems include practical
considerations that cannot be treated directly by
standard algorithms or, when it is possible to
adapt them, such a modification is often too
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expensive. Authors have traditionally focused on
the standard problem. Very few papers explicitly
present and solve non-standard assembly line bal-
ancing problems derived from real applications.
To the best of our knowledge, only [3,5] do so
and both deal with the automotive industry. The
problem described in [3] is similar to the one pre-
sented here. Unfortunately, the paper does not
present any computational study evaluating the
performance of the proposed heuristic.

In order to contribute to the study of real life
versions of single product assembly line balanc-
ing problems, we present the following instance
coming from a real application of a Canadian
manufacturer of home appliances, with 162 tasks
and 264 precedence constraints (the data set is
available at http://www.crt.umontreal.ca/~soph-
iel/balancing/). The assembly is carried out on
a sequential line with workstations located on
both sides of the conveyor, with two conveyor
heights and no possible re-positioning of the
product. The tasks have attributes that must
match the conveyor�s height and position attri-
butes. Statistics describing the tasks are summa-
rized in Table 4. Notice that only a few tasks
have an ‘‘indifferent’’ attribute, a feature that
makes our assembly problem even more different
from the academic version than the one pre-
sented in [3].

This is a harder problem than the standard one
because one also has to take into account attri-
butes for each workstation. The design of good
heuristics for multi-attributed assembly line bal-
ancing problems is not a trivial issue as shown in
[11]. The authors provide a multi-attributed ver-
sion of the COMSOAL heuristic with pseudo-ran-
dom attribute selection for workstations. Along
the same lines, it was rather easy (and quite a nat-
ural approach) to adapt the LRS algorithm to this
new context. This is done by constraining the
potential moves considered in both neighborhood
structures to those involving workstations either
sharing the same attributes or having compatible
ones with respect to the tasks involved. Moreover,
other practical constraints like task incompatibil-
ity or task grouping may be easily taken into ac-
count using the same type of neighborhood
filtering strategies based on attributes.
To solve this problem we therefore generate ini-
tial solutions using the heuristic in [11] and then
apply our adapted TS algorithm. The initial solu-
tion contains all the required workstations, with
their attributes and the set of tasks allocated to
them. The TS algorithm then attempts to improve
the initial solution by emptying (i.e. closing) work-
stations. Note that the original attributes given to
the open workstations cannot be modified by the
TS procedure.

We carried out several tests using the same ini-
tial solution with four versions of our TS in order
to evaluate the benefits derived from each of the
major components of the procedure. Each version
performed the allotted 20,000 iterations on every
instance. Computation times ranged from 7 to 13
seconds. The first version (TS1) explores only
neighborhood Nh1 while the second version
(TS2) is based on Nh2 alone. The third version
(TS3) implements the intensification–diversifica-
tion framework that switches from one neighbor-
hood to the other according to the search status.
Finally, the fourth version (TS4) is the complete
version described in Section 2 which, in addition
to TS3, allows workstation overloading during
the search and performs strategic oscillation. Table
5 shows the average number of workstations ob-
tained by each version of TS over 10 trial runs.
We also report, in column Init, the average values
of the initial solutions.

Finally, we decided to evaluate the relative dif-
ficulty of solving the real life version of SALBP-I
with height and position attributes versus the basic
one. In order to evaluate how tasks and worksta-
tions attributes define the solution structure with
respect to the standard problem, we decided to
solve the problem using the same tools––heuristics
and our last version of LRS, TS4––but neglecting
the attribute information. The results for the
standard version of the problem are shown in
Table 5 under header SALBP-I. From Table 5, it
can be seen that if TS2 alone hardly reduces the
number of stations, TS1 always succeeds in
improving the original solution. However, TS3

improves on both TS1 and TS2, confirming that
the combination of the two neighborhoods Nh1

and Nh2 generates some interesting synergies that
improve the overall search process. Table 5 also

http://www.crt.umontreal.ca/~sophiel/balancing/
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Table 4
Task characteristics of our industrial benchmark test

Position Height

Up Down Up or down Total

Front 50 26 3 79
Back 38 35 6 79
Front or Back 3 0 1 4

Total 91 61 10 162
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confirms the important contribution of the strate-
gic oscillation feature to the overall performance
of the algorithm: TS4 is able to generate better
solutions than TS3 in most cases. If we compare
the two versions of the benchmark test––the basic
SALBP-I and the one with attributes––the solu-
tions obtained for the former require less worksta-
tions then those of the latter. This is to be
expected, since the presence of attributes imposes
additional constraints on the problem. Hence,
the basic version is a relaxation of the version with
side and height attributes.

An interesting observation that can also be
made when analyzing the results reported in Table
5 is that the performance of priority-based heuris-
tics decreases significantly when passing from the
basic SALBP-I to real life settings in which
tasks/workstations attributes need to be consid-
ered. Since the LRS algorithm seems to be much
less sensitive to these changes, the practical interest
of the TS increases with the complexity of the
assembly line. Of course, the absolute quality of
the solutions provided by the LRS algorithm can-
not be assessed accurately since no exact method is
available to solve real life assembly line balancing
problems such as the one presented here. Never-
theless, these results are quite promising and
should encourage further research in this direction
to better support the manufacturer�s needs.
5. Conclusion

In this paper we presented a novel tabu search
algorithm for solving both simple assembly line
balancing problems of Type I and non-standard
versions of this problem coming from real life
applications. Computational results on both
standard benchmark instances and real life prob-
lems from industry have shown that the method
is efficient when compared to the existing ones.
On standard problems collected from the litera-
ture, our new TS provides results within 1 work-
station of the optimal solution. However, existing
data sets are not very difficult to solve: the simplest
heuristics find optimal solutions regularly. Clearly,
more complex test problems are needed in order to
evaluate more adequately existing and new algo-
rithms. Along this line, we present a non-standard
problem taken from an industrial application. The
flexibility of metaheuristics allowed us to easily
adapt our TS algorithm to the new specifications.
In this richer and more complex problem, our TS
outperforms the most popular priority-based heu-
ristics and allows us to confirm the efficiency and
adaptability of this type of solution approach for
complex problems such as this one.
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Appendix A

Algorithm 3. Pseudo-code of the LRS tabu search
algorithm

1: Initialize
2: it 0
3: it_nh 1
4: it_p 0
5: nh 1
6: p C2

7: Generate heuristic initial solution
8: while it < 20000 do
9: Select target workstation
10: Local search(nh)



Table 5
Comparison of the average number of workstations obtained with different TS variants on a SALBP-I with attributes and the basic
SALBP-I

Instance C SALBP-I with attributes SALBP-I

TS4 TS3 TS2 TS1 Init TS4 Init

75 27.8 28.2 32 28.2 32 26 27
80 24.6 27 28.8 27.2 29.2 24 25.4
85 24 24.4 27.6 24.4 27.8 23 23.8
90 23.2 23.4 26.2 23.6 26.4 22 22.2
100 21.2 21.2 23.8 21.4 23.8 19 20.2
110 20.3 20.2 22.4 20.2 22.8 18 18.2
125 18.2 18.2 20.2 17.8 20.2 16 16.2
135 15.8 15.8 18.4 16.4 18.8 14.2 15
150 15.2 15.2 16 15 16.4 13 13.2
165 14 14 15.2 14 15.4 12 12.2
175 13.2 13.4 15.4 13.6 16 11 11.6
185 11.7 11.8 13.6 11.8 13.8 11 11
200 11 11 12.6 11 12.6 10 10
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11: if improvement is reached then

12: it_nh 0
13: if it_nh > switch then

14: if nh = 1 then

15: nh 2
16: else
17: nh 1
18: it_nh 0
19: Update tabu lists
20: Update infeasible move counter
21: if it_p > a then

22: Update penalty (p)
23: it_p 0
24: it it + 1
25: it_nh it_nh + 1
26: it_p it_p + 1
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