Transportation Logistics

Part V: An introduction to VRP

Example 1

A furniture retailer is planning to supply a given number of customers with the furniture they ordered, using the company owned vehicle fleet. Each vehicle is of limited capacity. Which customers should be put on which vehicle's tour (starting and ending at the warehouse) and in which order, such that the total distance traveled is minimized?

Example 2
On a given winter day, the road maintenance authority has to make sure that all major roads are plowed. How shall the available snow plowing vehicles by employed and which road segment shall be plowed by which vehicle such that the total distance traveled is minimal?
\rightarrow arc-routing problem

\rightarrow node routing problem

[^0]An introduction to VRP
A classification
The 'basic problem': capacitated VRP (CVRP)

constraints: capacity of the vehicles

Classical extensions

- multiple depots (MD)
- heterogeneous fleet (HF)
- time windows (TW)
- soft time windows (STW)
- multiple time windows (MTW)
- split deliveries (SD)
- backhauls (B)
- pickup and delivery (PD)

A classification

Classical extensions

VRP

| MDVRP VRPB VRPTW VRPPD |
| :--- | :--- |

The capacitated vehicle routing problem

Notation

$$
\begin{aligned}
x_{i j} & =\left\{\begin{array}{l}
1, \text { if arc }(i j) \text { is part of the solution, } \\
0, \text { otherwise. }
\end{array}\right. \\
c_{i j} & =\text { the costs to traverse arc }(i, j) \\
d_{i} & =\text { demand of customer } i \\
C & =\text { vehicle capacity }
\end{aligned}
$$

$$
A \ldots \text { set of arcs, }
$$

$$
V \ldots \text { set of vertices }
$$

$$
n . . . \text { number of customers }
$$

$$
0 \ldots \text { depot }
$$

S...subest of customers
$r(S)=\left\lceil\sum_{i \in S} d_{i} / C\right\rceil \ldots$ the min. number of vehicles needed to serve the nodes in S.
(CVRP is formulated on a complete directed graph)

The capacitated vehicle routing problem

CVRP 1 - capacity cut constraints (CCCs)

$$
\begin{array}{rlrl}
\sum_{i \in V} \sum_{j \in V} c_{i j} x_{i j} & \rightarrow \min & & \\
\sum_{i \in V \backslash\{j\}} x_{i j} & =1 & \forall j \in V \backslash\{0\}, \\
\sum_{j \in V \backslash\{i\}} x_{i j} & =1 & & \forall i \in V \backslash\{0\}, \\
\sum_{i \in S} \sum_{j \notin S} x_{i j} \geq r(S) & & \forall S \subseteq V \backslash\{0\}, \\
x_{i j} & \in\{0,1\} & & \forall i, j \in V
\end{array}
$$

set of CCC: cardinality grows exponentially with n

The capacitated vehicle routing problem

CVRP 2 - generalized subtour elmination constraints (GSECs)

$$
\begin{align*}
\sum_{i \in V} \sum_{j \in V} c_{i j} x_{i j} & \rightarrow \text { min } & & \tag{6}\\
\sum_{i \in V \backslash\{j\}} x_{i j} & =1 & & \forall j \in V \backslash\{0\}, \tag{7}\\
\sum_{j \in V \backslash\{i\}} x_{i j} & =1 & & \forall i \in V \backslash\{0\}, \\
\sum_{i \in S} \sum_{j \in S} x_{i j} & \leq|S|-r(S) & & \forall S \subseteq V \backslash\{0\}, S \neq \varnothing, \tag{8}\\
x_{i j} & \in\{0,1\} & & \forall i, j \in V .
\end{align*}
$$

set of GSECs: cardinality grows exponentially with n

The capacitated vehicle routing problem

CVRP 3 - adapted Miller-Tucker-Zemlin (MTZ) subtour elimination constraints

$$
\begin{align*}
\sum_{i \in V} \sum_{j \in V} c_{i j} x_{i j} & \rightarrow \min & & \sum_{i \in V \backslash\{j\}} x_{i j}
\end{align*}=1 \quad \begin{array}{lrl}
\sum_{j \in V \backslash\{i\}} x_{i j} & =1 & \tag{11}\\
\sum_{i} \in i \in V \backslash\{0\}, \tag{12}\\
u_{i}-u_{j}+C x_{i j} & \leq C-d_{j} & \tag{13}\\
x_{i j} & \in\{0,1\} & \tag{14}\\
d_{i} & \leq u_{i} \leq C \in V \backslash\{0\}, i \neq j, \text { such that } d_{i}+d_{j} \leq C \tag{15}\\
& & \forall i \in V \backslash\{0\} \tag{16}
\end{array}
$$

$u_{i} \forall i \in V \backslash\{0\}$ gives the load of the vehicle after visiting cust. i set of MTZ subtour elim: polynomial cardinality

Given vehicle fleet m

$$
\begin{align*}
& \sum_{j \in V} x_{0 j} \leq m \tag{17}\\
& \sum_{i \in V} x_{i 0} \leq m \tag{18}
\end{align*}
$$

$$
\begin{align*}
& \sum_{j \in V} x_{0 j}=m \tag{19}\\
& \sum_{i \in V} x_{i 0}=m \tag{20}
\end{align*}
$$

Constructive heuristics

- Clarke and Wright savings algorithm
- Sequential and parallel insertion heuristics
- Cluster first route second heuristics
- Petal algorithms
- Route first cluster second heuristics

Clarke and Wright savings algorithm

\star Merging $(0, \ldots, i, 0)$ and $(0, j, \ldots, 0)$ into $(0, \ldots, i, j, \ldots, 0)$ results in a distance saving of $s_{i j}=c_{i 0}+c_{0 j}-c_{i j}$.

- Initialization Computation of savings: for each i and j ($i \neq j$) compute the savings $s_{i j}=c_{i 0}+c_{0 j}-c_{i j}$; create a single customer route for each customer i : $(0, i, 0)$; put savings into a list in decreasing order.
- Step 1 Best feasible merge: start with the first entry of the savings list. For each saving $s_{i j}$, determine if there exist two routes, one with arc or edge $(0, j)$ and one with arc $(i, 0)$, that can be merged in a feasible way. If yes combine the two: delete $(0, j)$ and $(i, 0)$, introduce (i, j).

Transportation Logistics
An introduction to VRP

Savings algorithm

Savings - Example - Data

Transportation Logistics
An introduction to VRP
Savings algorithm

Savings - Example

$s_{i j}$	1	2	3	4	5	6	7	8	9	10
1	\times	5.8	5.3	4.9	2.7	0.0	0.3	0.6	1.7	3.1
2	5.8	\times	6.5	2.7	1.2	0.1	0.0	1.4	2.9	4.5
3	5.3	6.5	\times	2.0	0.6	0.7	0.1	2.6	5.4	7.5
4	4.9	2.7	2.0	\times	5.8	1.4	1.7	0.0	0.1	0.6
5	2.7	1.2	0.6	5.8	\times	2.6	2.7	0.4	0.1	0.0
6	0.0	0.1	0.7	1.4	2.6	\times	4.1	4.0	4.3	2.1
7	0.3	0.0	0.1	1.7	2.7	4.1	\times	1.8	1.4	0.6
8	0.6	1.4	2.6	0.0	0.4	4.0	1.8	\times	6.0	4.4
9	1.7	2.9	5.4	0.1	0.1	4.3	1.4	6.0	\times	8.6
10	3.1	4.5	7.5	0.6	0.0	2.1	0.6	4.4	8.6	\times
d_{i}	2	1	1	2	1	1	2	1	1	2

$C=4$

A sequential insertion algorithm

- Step 1 If all vertices belong to a route \rightarrow STOP. Otherwise, initialize a new tour with an unrouted vertex k. New current tour ($0, k, 0$). Choose k according to a certain criterion, e.g. random, closests to 0 , farthest from $0 \ldots$
- Step 2 Do cheapest feasible insertion into the current tour until no additional vertex can be feasibly inserted. In this case, go to step 1.
\star One route is filled after the other.

A parallel insertion algorithm

- Step 1 Initialize the minimum number of routes $\left\lceil\sum_{i} d_{i} / C\right\rceil$ with seed customers (chosen randomly, closest to 0 , farthest from 0 ...)
- Step 2 Start with customer 1. Sequentially, insert one customer after the other at its best insertion position. If a customer cannot be inserted in a feasible way in any of the routes, add an additional route.
\star Several routes are considered and filled simultaneously.

Cluster first route second heuristics

- Sweep algorithm
- Fisher and Jaikumar Algorithm

Sweep algorithm

\star Only applicable to planar instances (polar coordinates necessary: angle and ray length).
Clusters are formed by rotating a ray centered at the depot:

- Clustering Start with the unassigned vertex with the smallest anlge. Assign vertices to vehicle k as long as the capacity (or the route length) is not exceeded. If there are still unrouted vertices, initialize a new vehicle.
- Routing Solve a TSP for each cluster (exact or heuristic methods, e.g. nearest neighbor).

An introduction to VRP
Cluster first route second heuristics

Sweep algorithm - Example

Clustering

Transportation Logistics
An introduction to VRP
Cluster first route second heuristics

Sweep algorithm - Example

Routing (Nearest neighbor)

Fisher and Jaikumar Algorithm

\star Not directly applicable to VRP with distance constraint.
\star Assumption: size of the vehicle fleet is given.

- Clustering
- Step 1 Seed selection: choose seed vertices $j_{k} \in V$ to initialize each cluster k.
- Step 2 Allocation of customers to seeds: Compute the cost $a_{i k}$ of allocating customer i to cluster k :
$a_{i k}=\min \left\{c_{0 i}+c_{i j_{k}}+c_{j_{k} 0}, c_{0 j_{k}}+c_{j_{k} i}+c_{i 0}\right\}-\left(c_{0 j_{k}}+c_{j_{k} 0}\right)$.
- Step 3 Generalized assignment: Solve a GAP with $a_{i k}$, weights d_{i} (demand) and vehicle capacity C to obtain the clusters.
- Routing Solve a TSP for each cluster.

Fisher and Jaikumar Algorithm

The generalized assignment problem (GAP)

$$
x_{i k}=\left\{\begin{array}{l}
1, \text { if } i \text { assigned to cluster } k \tag{21}\\
0, \text { otherwise }
\end{array}\right.
$$

$$
\begin{array}{rlr}
\min \sum_{i} \sum_{k} a_{i k} x_{i k} & \\
\sum_{k} x_{i k}=1 & \forall i \\
\sum_{i} d_{i} x_{i k} \leq C & \forall k \\
x_{i k} & \in\{0,1\} &
\end{array}
$$

\star The GAP is more difficult than the AP.

Fisher and Jaikumar Algorithm - Example

Clustering

Fisher and Jaikumar Algorithm - Example

Clustering

solve the GAP
(e.g. with Excel solver)

$x_{i k}$	2	5	6	10
1	1	0	0	0
2	1	0	0	0
3	0	0	0	1
4	0	1	0	0
5	0	1	0	0
6	0	0	1	0
7	0	0	1	0
8	0	0	1	0
9	0	0	0	1
10	0	0	0	1

\star The GAP can also be solved heuristically (e.g. greedy).

Fisher and Jaikumar Algorithm - Example

Routing (e.g. nearest neighbor)

$c_{i j}$	0	1	2	3	4	5	6	7	8	9	10
0	0.0	4.5	3.6	5.1	4.5	3.6	5.0	2.2	3.2	6.4	5.4
1	4.5	0.0	2.2	4.2	4.0	5.4	9.4	6.4	7.1	9.2	6.7
2	3.6	2.2	0.0	2.2	5.4	6.0	8.5	5.8	5.4	7.1	4.5
3	5.1	4.2	2.2	0.0	7.6	8.1	9.4	7.3	5.7	6.1	3.0
4	4.5	4.0	5.4	7.6	0.0	2.2	8.1	5.0	7.6	10.8	9.2
5	3.6	5.4	6.0	8.1	2.2	0.0	6.0	3.2	6.4	9.9	8.9
6	5.0	9.4	8.5	9.4	8.1	6.0	0.0	3.2	4.1	7.1	8.2
7	2.2	6.4	5.8	7.3	5.0	3.2	3.2	0.0	3.6	7.2	7.1
8	3.2	7.1	5.4	5.7	7.6	6.4	4.1	3.6	0.0	3.6	4.1
9	6.4	9.2	7.1	6.1	10.8	9.9	7.1	7.2	3.6	0.0	3.2
10	5.4	6.7	4.5	3.0	9.2	8.9	8.2	7.1	4.1	3.2	0.0

Petal algorithms

(1) Route generation

Generate a bundle of routes (one route is called a petal), using constructive methods (e.g. sweep (starting from each vertex once), randomized sequential insertion, etc.)
(2) Route selection

Select the best combination of routes by solving a set partitioning problem.

Petal algorithms

The set partitioning problem

$$
\begin{aligned}
x_{r} & =\left\{\begin{array}{l}
1, \text { if petal/route } r \text { selected } \\
0, \text { otherwise }
\end{array}\right. \\
a_{i r} & =\text { parameter }(0 / 1) \text { indicating whether customer } i \text { is on route } r \\
c_{r} & =\text { costs of petal } r
\end{aligned}
$$

$$
\begin{array}{rlr}
\min \sum_{r} c_{r} x_{r} & \\
\sum_{r} a_{i r} x_{r} & =1 & \forall i \\
x_{r} & \in\{0,1\} & \forall r \tag{28}
\end{array}
$$

Route first cluster second heuristics

- Routing

Use a TSP solution method to generate one giant tour through all the customers.

- Partitioning

Insert the depot in such a way that feasible VRP tours are obtained (respecting the capacity and/or the distance constraint). Exact and heuristic methods possible.
\star Only applicable if the there is no constraint on the number of vehicles.

Route first cluster second heuristics - Example

Assume the following TSP tour through all vertices:
0-1-2-3-4-5-6-7-8-9-10-0

	0	1	2	3	4	5	6	7	8	9	10
d_{i}	0	2	1	1	2	1	1	2	1	1	2

Option 1 (heuristic)
Insert the depot whenever necessary:
0-1-2-3-0-4-5-6-0-7-8-9-0-10-0
Option 2 (exact)
Find the best partitioning (shortest path algorithms!):

Transportation Logistics
An introduction to VRP
Route first cluster second heuristics

Route first cluster second heuristics - Example

arc weights from node i to node k : $c_{0 i}+c_{j 0}+l_{i j}$, with $l_{i j}$ costs of going from i to j in TSP tour and j direct predecessor of k in TSP tour.

Route first cluster second heuristics - Example

Find the shortest path in the auxiliary graph (Dijkstra!)

| n | $\mathrm{D}[1]$,
 $\mathrm{V}[1]$ | $\mathrm{D}[2]$,
 $\mathrm{V}[2]$ | $\mathrm{D}[3]$,
 $\mathrm{V}[3]$ | $\mathrm{D}[4]$,
 $\mathrm{V}[4]$ | $\mathrm{D}[5]$,
 $\mathrm{V}[5]$ | $\mathrm{D}[6]$,
 $\mathrm{V}[6]$ | $\mathrm{D}[7]$,
 $\mathrm{V}[7]$ | $\mathrm{D}[8]$
 $\mathrm{V}[8]$ | $\mathrm{D}[9]$
 $\mathrm{V}[9]$ | $\mathrm{D}[10]$
 $\mathrm{V}[10]$ | $\mathrm{D}[0]$
 $\mathrm{V}[0]$ | visited |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $0 ; 1$ | $9 ; 1$ | $10.3 ; 1$ | $14 ; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $1 ; 0.0$ |
| 1 | | $9 ; 1$ | $10.3 ; 1$ | $14 ; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $2 ; 9.0$ |
| 2 | | | $10.3 ; 1$ | $14 ; 1$ | $26.9 ; 2$ | $-; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $3 ; 10.3$ |
| 3 | | | | $14 ; 1$ | $26.9 ; 2$ | $28.9 ; 3$ | $-; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $4 ; 14.0$ |
| 4 | | | | | $23 ; 4$ | $24.3 ; 4$ | $31.7 ; 4$ | $-; 1$ | $-; 1$ | $-; 1$ | $-; 1$ | $5 ; 23.0$ |
| 5 | | | | | | $24.3 ; 4$ | $31.7 ; 4$ | $38 ; 5$ | $-; 1$ | $-; 1$ | $-; 1$ | $6 ; 24.3$ |
| 6 | | | | | | | $31.7 ; 4$ | $34.7 ; 6$ | $39.2 ; 6$ | $-; 1$ | $-; 1$ | $7 ; 31.7$ |
| 7 | | | | | | | | $34.7 ; 6$ | $39.2 ; 6$ | $47.6 ; 7$ | $-; 1$ | $8 ; 34.7$ |
| 8 | | | | | | | | | $39.2 ; 6$ | $47.6 ; 7$ | $50 ; 8$ | $9 ; 39.2$ |
| 9 | | | | | | | | | | $47.6 ; 7$ | $50 ; 8$ | $10 ; 47.6$ |
| 10 | | | | | | | | | | | $50 ; 8$ | $0 ; 50$ |

The shortest path:
1-4-6-8-0

Transportation Logistics

An introduction to VRP

Route first cluster second heuristics

Route first cluster second heuristics - Example

References

Paolo Toth, and Daniele Vigo (2002) The Vehicle Routing Problem, SIAM. (Chapters 1 and 5)
W. Domschke (1997) 'Logistik: Rundreisen und Touren'

Oldenbourg.

[^0]: Source: Domschke (1997) Logistik: Rundreisen und Touren, Chapter 5.

