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Transportation Logistics

Traveling salesman problems

Motivation

Motivation

Why do we study the TSP?

it easy to formulate

it is a difficult problem

many significant real-world problems can be formulated as
TSP
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Transportation Logistics

Traveling salesman problems

Motivation

Application areas of the TSP

Vehicle routing

Once the assignment of customers to routes has been done. A TSP
(possibly with side constraints) has to be solved for each vehicle.

Cutting wallpaper

Assume n sheets of wallpaper shall be cut from a single roll of
paper. The amount of paper that is wasted varies depending on
which sheet j is cut from the roll directly after i. We want to
minimize the total wastage.

c© R.F. Hartl, S.N. Parragh 3 / 74



Transportation Logistics

Traveling salesman problems

Motivation

Application areas of the TSP

Job sequencing

n jobs shall be scheduled on a single machine. The jobs can be
done in any order. Assume that we have sequence dependent setup
times, i.e. depending on which job i precedes job j the time
needed to adapt the machine to be able to process job j varies. All
jobs shall be completed in the shortest possible time.

Clustering a data array

Computer wiring

...
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Traveling salesman problems

The asymmetric TSP

The asymmetric TSP

xij =

{

1, if arc (ij) is part of the solution,

0, otherwise.

cij = the costs to traverse arc (i, j)

A...set of arcs,
V ...set of vertices
(TSP is formulated on a
complete directed graph)

IP Formulation

∑

(i,j)∈A

cijxij → min (1)

∑

i∈V \{j}

xij = 1 ∀j ∈ V, (2)

∑

j∈V \{i}

xij = 1 ∀i ∈ V, (3)

∑

i∈S

∑

j /∈S

xij ≥ 1 ∀S ⊂ V, |S| ≥ 2, (4)

xij ∈ {0, 1} ∀(i, j) ∈ A. (5)
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Traveling salesman problems

The asymmetric TSP

The asymmetric TSP - connectivity/subtour elimination

Option 1 (connectivity constraints)

∑

i∈S

∑

j /∈S

xij ≥ 1 ∀S ⊂ V, |S| ≥ 2 (6)

Option 2 (subtour elimination constraints)

∑

i∈S

∑

j∈S

xij ≤ |S| − 1 ∀S ⊂ V, |S| ≥ 2 (7)

These two formulations are algebraically equivalent. They prevent
the formation of subtours containing fewer than |S| vertices.
Note that the number of subtour elimination constraints needed is
2|V | − |V | − 2.
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Traveling salesman problems

The asymmetric TSP

The asymmetric TSP

A solution with 2 subcycles

A

B

C

D

E

Subtour elim. for subtour A-B-C:
Option 1: xAD + xAE + xBD +
xBE + xCD + xCE ≥ 1
Option 2:
xAB + xAC + xBA + xBC + xCA +
xCB(+xAA + xBB + xCC) ≤ 2

Subtour elim. for subtour D-E:
Option 1: xDA + xEA + xDB +
xEB + xDC + xEC ≥ 1
Option 2:
xDE + xED(+xDD + xEE) ≤ 1
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Transportation Logistics

Traveling salesman problems

The asymmetric TSP

A lower bound for the asymmetric TSP

The ATSP is known to be NP-hard (we do not know of a
polynomial time algorithm for its solution).

A good lower bound on the optimal solution of the ATSP can be
obtained by removing the subtour elimination constraints. The
relaxed problem is the Linear Assignment Problem!

(cii := ∞ such that x∗ii = 0)

Rule: z∗AP is a good lower bound on z∗ATSP if the cost matrix is
strongly asymmetric. (empirical tests showed that
(z∗ATSP − z∗AP )/z

∗
AP often < 1%). If the cost matrix is symmetric,

(z∗ATSP − z∗AP )/z
∗
AP is often more than 30%.

Source: Laporte et al. (2004) Introduction to Logistics Systems Planning and Control, p. 252ff
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Transportation Logistics

Traveling salesman problems

The asymmetric TSP

ATSP: Patching heuristic

Initialization
Solve the AP. Let C = {C1, . . . , Cp} denote the set of
subcycles in the optimal solution of the AP. If |C| = 1 →
STOP. Otherwise proceed with step 2.

Step 1
Identify the two subcycles with the largest number of vertices.

Step 2
Merge these two subcycles such that the cost increase is as
small as possible and update C. If |C| = 1 → STOP.
Otherwise go back to step 2.
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Traveling salesman problems

The asymmetric TSP

ATSP: Patching heuristic - Example

A

B

C

D

E

F

2

2

3

3

4

2

5

2

4

3

cij A B C D E F
A 0 12 2 10 6 12
B 2 0 3 3 7 5
C 12 10 0 8 4 10
D 4 2 5 0 5 2
E 8 6 9 4 0 6
F 11 9 12 7 3 0

Initialization apply the Hungarian method.
Several alternative AP solutions with Z =
23:
Solution 1:
A → C → F → E → D → B → A

Solution 2:
A → C → E → B → A, D → F → D

Solution 3:
A → C → B → A, D → F → E → D
...

A

B

C

D

E

F

2

10

2 2

3

4

c© R.F. Hartl, S.N. Parragh 10 / 74



Transportation Logistics

Traveling salesman problems

The asymmetric TSP

ATSP: Patching heuristic - Example

A

B

C

D

E

F

10

2

2

2

3

4

cij A B C D E F
A 0 12 2 10 6 12
B 2 0 3 3 7 5
C 12 10 0 8 4 10
D 4 2 5 0 5 2
E 8 6 9 4 0 6
F 11 9 12 7 3 0

Steps 1 and 2 Find the best way to join the
two subcycles:
Insert 2nd tour between A and C:
A → D → F → E → C ∆ = 10 + 9 − 2 − 4 = 13

A → F → E → D → C ∆ = 12 + 5 − 2 − 2 = 13

A → E → D → F → C ∆ = 6 + 12 − 2 − 3 = 13

Insert 2nd tour between C and B:
C → D → F → E → B ∆ = 8 + 6 − 10 − 4 = 0

C → F → E → D → B ∆ = 10 + 2 − 10 − 2 = 0

C → E → D → F → B ∆ = 4 + 9 − 10 − 3 = 0

Insert 2nd tour between B and A:
B → D → F → E → A ∆ = 3 + 8 − 2 − 4 = 5

B → F → E → D → A ∆ = 5 + 4 − 2 − 2 = 5

B → E → D → F → A ∆ = 7 + 11 − 2 − 3 = 13

e.g. best solution (several):
A → C → F → E → D → B → A

Z = 23 (upper bound on z
∗
ATSP )
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Traveling salesman problems

The symmetric TSP

The symmetric TSP (STSP)

Since lower and upper bounding procedures for the ATSP do not
perfom well if applied to the STSP, procedures tailored to the
STSP have been developed.

Notation

xe =

{

1, if edge e is part of the solution,

0, otherwise.

ce = cij = cji

E...edge set
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Transportation Logistics

Traveling salesman problems

The symmetric TSP

STSP: IP formulations

∑

(i,j)∈E

xijcij → min (8)

∑

j∈V :(j,i)∈E

xji +
∑

j∈V :(i,j)∈E

xij = 2 ∀i ∈ V, (9)

∑

(i,j)∈E:i∈S,j /∈S

xij +
∑

(j,i)∈E:i∈S,j /∈S

xji ≥ 2 ∀S ⊂ V, 2 ≤ |S| ≤ ⌈|V |/2⌉,

(10)

xe ∈ {0, 1} ∀e ∈ E. (11)

i < j for each edge (i, j) ∈ E
Since the connectivity constraints of subset S are equivalent to
those of subset V \ S, we only consider S ⊂ V such that
|S| ≤ ⌈|V |/2⌉.
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Transportation Logistics

Traveling salesman problems

The symmetric TSP

STSP: IP formulations

∑

e∈E

xece → min (12)

∑

e∈J(i)

xe = 2 ∀i ∈ V, (13)

∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊂ V, 2 ≤ |S| ≤ ⌈|V |/2⌉ (14)

xe ∈ {0, 1} ∀e ∈ E. (15)

J(i) all edges connected to i; E(S) edges connecting vertices in
subset S
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Traveling salesman problems

The symmetric TSP

STSP: a lower bound

The STSP is also NP-hard. A valid lower bound on the optimal
solution cost z∗STSP is the optimal solution cost of the MST
z∗MST
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Traveling salesman problems

The symmetric TSP

STSP: Christofides’ heuristic

Initialization Compute a minimum spanning tree T .

Step 1 Compute a least-cost perfect matching among the
vertices of odd degree in T . (VD...vertices with odd degree).
Add the edges of the perfect matching (M ...vertices of the
matching, H...graph induced by union of the edges ∈ T and
∈ M).

Step 2 If there is a vertex j ∈ V of degree > 2, eliminate two
edges incident in j, denote them (j, k),(j, h) with k 6= h and
add edge (k, h) (try to replace those two edges that improve
the solution value the most and do not lead to subcycles).
Repeat step 2 until all vertices in V have a degree of 2.
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Traveling salesman problems

The symmetric TSP

STSP: Christofides’ heuristic - Example

A

B

C

D

E

O
T

2

2

1

5
O

B

C

T

4

9

4

O A B C D E T
O 0 2 4 4 8 7 13
A 2 0 2 3 6 5 11
B 4 2 0 1 4 3 9
C 4 3 1 0 5 4 10
D 8 6 4 5 0 1 5
E 7 5 3 4 1 0 6
T 13 11 9 10 5 6 0

Initialization compute the minimum
spanning tree (Kruskal’s algorithm!)

Step 1 VD = {O,C,B, T}
Compute a least-cost perfect matching:
O −B,C − T : 4 + 10 = 14
O − C,B − T : 4 + 9 = 13
O − T,B − C: 13 + 1 = 14
Least cost perfect matching:
E(M) = {(O,C), (B, T )}: 4 + 9 = 13

Step 2 j = B find shortcuts.
B is connected to A,C,E,T
possible shortcuts:
A− E: ∆ = 5− 5 = 0
A− T : ∆ = 11 − 11 = 0
C − E: ∆ = 4− 4 = 0
C − T : ∆ = 10− 10 = 0
We choose C − E
zSTSP = 27
z∗MST = 14
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Traveling salesman problems

Further solution methods

Solution methods

Heuristic methods

Nearest neighbor

Cheapest insertion

k-opt (local search)

Exact methods

Branch and bound algorithms
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Traveling salesman problems

Construction heuristics

Nearest neighbor heuristic

Initialization Set P = {r} with r being a vertex chosen
arbitrarily and P denotes the (partial) TSP tour. Set h = r.

Step 1 Find the vertex k ∈ V \ P such that
chk = minj∈V \P {chj}. Append k to the end of P .

Step 2 If |P | = |V |, add r to the end of P and STOP. (P is
now a Hamiltonian cycle). Otherwise, set h = k and continue
with step 1.

Hamiltonian cycle

A cycle that contains all the vertices of a graph. (TSP = problem
of finding the minimum cost Hamiltonian cycle in a graph)

Sources: Laporte et al. (2004) Introduction to Logistics Systems Planning and Control, p. 261
E.L. Lawler J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (Eds) (1990) ’The traveling salesman problem’, p. 2,
p. 150f.
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Traveling salesman problems

Construction heuristics

Nearest neighbor heuristic - Example

O

A

B

C

D

E

T
O

A

2

B

2

C

1

4

E

1

D 5

T

13

O A B C D E T
O 0 2 4 4 8 7 13
A 2 0 2 3 6 5 11
B 4 2 0 1 4 3 9
C 4 3 1 0 5 4 10
D 8 6 4 5 0 1 5
E 7 5 3 4 1 0 6
T 13 11 9 10 5 6 0

Initialization r = O, P = {O}, h = O

Step 1 identify the nearest neighbor to O
→ A: k = A, P = {O,A}, Z = 2
Step 2 |P | < |V | →
Step 1 identify the nearest neighbor to A
→ B: k = B, P = {O,A,B}, Z = 4
Step 2 |P | < |V | →
Step 1 identify the nearest neighbor to B
→ C: k = C, P = {O,A,B, C}, Z = 5
Step 2 |P | < |V | →
...
P = {O,A,B,C, E,D, T},
Z = 5 + 4 + 1 + 5 = 15
Step 2 |P | = |V |, append O to P
P = {O,A,B,C, E,D, T,O}
zTSP = 28
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Traveling salesman problems

Construction heuristics

Nearest neighbor heuristic - Observations

Advantages

Simple and fast

Disadvantages

Solution can be of rather poor quality. (edges added in later
iterations may be quite long - especially the last edge connecting
back to the first vertex)

c© R.F. Hartl, S.N. Parragh 21 / 74



Transportation Logistics
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Construction heuristics

Cheapest insertion heuristic

Initialization arbitrarily choose the first vertex r. Initialize
the TSP tour P = {r, r}, Z = 0

Iteration step If |P | < |V |+ 1

For each vertex i ∈ V \ P find the cheapest insertion position
between any j and k; j, k ∈ P and neighboring in P .
Find the vertex i∗ ∈ V \ P that can be inserted the cheapest;
insert it at its cheapest position (say j∗ and k∗):
P = {r, . . . , j∗, i∗, k∗, . . . , r} and set
Z = Z − cj∗k∗ + cj∗i∗ + ci∗k∗
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Traveling salesman problems

Construction heuristics

Cheapest insertion heuristic - Example

O

A

B

C

D

E

T
O

A

B4

2

2

O A B C D E T
O 0 2 4 4 8 7 13
A 2 0 2 3 6 5 11
B 4 2 0 1 4 3 9
C 4 3 1 0 5 4 10
D 8 6 4 5 0 1 5
E 7 5 3 4 1 0 6
T 13 11 9 10 5 6 0

Initialization r = O, P = {O,O} Z = 0

Iteration 1
O −A−O ∆ = 2 + 2 = 4
O −B − O ∆ = 4 + 4 = 8
O − C − O ∆ = 4 + 4 = 8
O −D −O ∆ = 8 + 8 = 16
O −E − O ∆ = 7 + 7 = 14
O − T −O ∆ = 13 + 13 = 26
A: i∗ = A, P = {O,A,O}, Z = 4
Iteration 2
O −B − A, A−B − O
∆ = −2 + 2 + 4 = 4
O − C − A, A− C − O
∆ = −2 + 4 + 3 = 5
O −D −A, A−D − O
∆ = −2 + 8 + 6 = 12
O −E − A, A−E − O
∆ = −2 + 7 + 5 = 10
O − T −A, A− T − O
∆ = −2 + 13 + 11 = 24
B: i∗ = B, P = {O,B,A,O}, Z = 8
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Construction heuristics

Cheapest insertion heuristic - Example

O

A

B

C

D

E

T
O

A

B

2

2

C

4

D

E

T

10

5

1

3

O A B C D E T
O 0 2 4 4 8 7 13
A 2 0 2 3 6 5 11
B 4 2 0 1 4 3 9
C 4 3 1 0 5 4 10
D 8 6 4 5 0 1 5
E 7 5 3 4 1 0 6
T 13 11 9 10 5 6 0

Iteration 3
O − C − B ∆ = −4 + 4 + 1 = 1
B − C − A ∆ = −2 + 1 + 3 = 2
A− C − O ∆ = −2 + 4 + 3 = 5
O −D −B ∆ = −4 + 8 + 4 = 8
B −D −A ∆ = −2 + 4 + 6 = 10
A−D − O ∆ = −2 + 8 + 6 = 12
...
C: i∗ = C, P = {O,C,B,A,O}, Z = 9
...
P = {O,C, T,D,E,B,A,O}, zTSP = 27
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Improvement heuristics

Local search

Local search

Local search algorithms are iterative procedures that try to improve
an initial feasible solution x(0). At the kth iteration, all solutions
contained in a ’neighborhood’ of the current solution x(k) are
enumerated. If there exist feasible solutions that are less costly
than x(k), the best solution of the neighborhood becomes the new
current solution x(k+1) and the procedure is repeated. Otherwise,
the procedure ends. The last current solution is the local optimum.

Source: Laporte et al. (2004) Introduction to Logistics Systems Planning and Control, p. 263

Neighborhood

A neighborhood is defined by all feasible solutions that can be
reached by applying a given operator to a given solution (e.g.:
move one vertex, exchange two vertices).
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Traveling salesman problems

Improvement heuristics

Lin-Kernighan: k-opt (local search)

Initialization Let P (0) be the initial TSP solution and let
z
(0)
TSP be the cost of P (0). Set h = 0.

Step 1 Identify the best feasible solution P (h+1) that can be

obtained through a k-exchange. If z
(h+1)
TSP ≥ z

(h)
TSP , STOP.

Step 2 set h = h+ 1 and proceed with step 1.

k-exchange

replace k links (edges) of the current solution with k new links,
e.g. a 2-exchange: replace (i, j) and (k, l) by (i, l) and (j, k) (=
inverse the sequence between j and k)
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Traveling salesman problems

Improvement heuristics

Lin-Kernighan: 2-exchange

i

k

l

j

i

k

l

j
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Improvement heuristics

Lin-Kernighan: 2-opt (typical picture)
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Traveling salesman problems

Improvement heuristics

Lin-Kernighan: 2-opt - Example

A

B

C

D

E

O
T

Initial solution
O − C −E −D − T −B −A−O

best improvement: the best one becomes
the new current solution; repeat until no
further improvement.

first improvement: the first improving
solution becomes the new current solution;
repeat until no further improvement.

2-opt
O −E − C −D − T −B −A−O
O − C −D − E − T −B −A−O
O − C − E − T −D −B −A−O
O − C − E −D −B − T −A−O
O − C − E −D − T −A− B −O
O −D −E − C − T −B −A−O
O − C − T −D − E −B −A−O
O − C − E −B − T −D −A−O
O − C − E −D −A−B − T −O
O − T −D − E − C −B −A−O
O − C − B − T −D − E −A−O
O − C − E −A−B − T −D −O
O −B − T −D −E − C −A−O
O − C − A− B − T −D − E −O
O −A−B − T −D −E − C −O
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Traveling salesman problems

Branch and bound algorithms

Branch and bound (BB) - the concept

A general method for solving (mixed) integer optimization problems (with a
minimization objective). It uses two concepts: branching and bounding.

Root node solve relaxation of the optimization problem (e.g., LP of IP). Set
LB to the objective function value of the relaxed problem z0 and set UB = ∞.
Put the root node into the set of unprocessed nodes Q.

Repeat (until Q is empty)

select a node k from the set Q, according to a certain criterion.
identify on what to branch
branch: partition the problem Pk at k into a given number of
subproblems s: Pk1

. . . Pks
(one child node for each subproblem); for the

solution spaces wrt the original optimization problem L(Pk) = ∪s
i=1Pki

has to hold. (e.g., 2 child nodes: in the 1st child node (1st partition) a certain characteristic is

forbidden while in the 2nd child node (2nd partition), this characteristic is enforced).
compute the lower bounds at the child nodes (new enforced/forbidden

characteristics plus all enforced/forbidden characteristics of parent nodes); put the child
nodes into Q
bound: the lowest bound across all nodes ∈ Q gives the current LB; a
feasible solution to the original problem at a given node gives a new UB;
all open nodes associated with LBs ≥ UB can be pruned (removed from
Q).
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Traveling salesman problems

Branch and bound algorithms

Branch and bound (BB) - the concept

z = 10

z = 11 z = 12

z = 13 z = 17 z = 16 z = 18X X

z = 14 z = 15X

LB = 1011121314
UB = ∞1614
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB algorithm

θij is the sum of the smallest cost element in row i (excluding cij)
and the smallest cost element in column j (excluding cij); only
computed for arcs with cij = 0.

arc that would lead to a cycle: e.g., already committed arcs
(1,2),(3,4), new committed arc (2,3); arc that would lead to a
cycle: (4,1);
e.g., already committed arcs (1,2),(3,4), new committed arc (5,6);
arc that would lead to a cycle: (6,5).
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Transportation Logistics

Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB algorithm

Lower bounds

let z(t) denote the costs of a tour under a matrix before row- and
column-wise reduction (tour → one entry in each row and column
selected!); let z1(t) denote the cost under the matrix afterward and
h the reduction constant:

z(t) = h+ z1(t)

therefore, h is a valid lower bound for z(t).

If cij is set to M (forbidden), row i and column j can be reduced
by their smallest entries; the sum of these two is given by θij.
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Branch and bound algorithms

ATSP: Little et al. BB - Example

Root node k = 0
1 2 3 4 5 6

1 M 7 4 2 1 3 -1
2 3 M 3 2 4 6 -2
3 2 3 M 4 5 3 -2
4 7 1 5 M 4 4 -1
5 4 4 3 5 M 3 -3
6 4 3 3 6 2 M -2
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

Root node k = 0

1 2 3 4 5 6
1 M 6 3 1 0 (1) 2
2 1 M 1 0 (2) 2 4
3 0 (2) 1 M 2 3 1
4 6 0 (4) 4 M 3 3
5 1 1 0 (1) 2 M 0(1)
6 2 1 1 4 0 (1) M

reduction constant = 1+2+2+1+3+2=11

C0 = 11
branch on (4, 2)
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Branch and bound algorithms

ATSP: Little et al. BB - Example

C0 = 11

C1 = 15

x4,2 = 0

C2 = 15

x4,2 = 1
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Branch and bound algorithms

ATSP: Little et al. BB - Example

Compute bound at node 2
(4,2) has to be included (eliminate according row and column and
set c2,4 = M)

1 3 4 5 6
1 M 3 1 0 2
2 1 1 M 2 4 -1
3 0 M 2 3 1
5 1 0 2 M 0
6 2 1 4 0 M

-1

C2 = C0 + 2
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

C0 = 11

C1 = 15

x4,2 = 0

C2 = 13

x4,2 = 1

select node 2
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Branch and bound algorithms

ATSP: Little et al. BB - Example

Decide on what to branch at node 2
compute the θ values.

1 3 4 5 6
1 M 3 0(1) 0(0) 2
2 0(0) 0(0) M 1 3
3 0(1) M 1 3 1
5 1 0(0) 1 M 0(1)
6 2 1 3 0(1) M

branch on (3,1)
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Branch and bound algorithms

ATSP: Little et al. BB - Example

C0 = 11

C1 = 15

x4,2 = 0

C2 = 13

x4,2 = 1

C3 = 14

x3,1 = 0

C4 = 13

x3,1 = 1
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Branch and bound algorithms

ATSP: Little et al. BB - Example

Compute the lower bound at node 4
include (3,1) and forbid (1,3)

3 4 5 6
1 M 0 0 2
2 0 M 1 3
5 0 1 M 0
6 1 3 0 M

no reduction possible: C4 = C2 = 13

c© R.F. Hartl, S.N. Parragh 41 / 74
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

C0 = 11

C1 = 15

x4,2 = 0

C2 = 13

x4,2 = 1

C3 = 14

x3,1 = 0

C4 = 13

x3,1 = 1

select node 4
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

Decide on what to branch at node 4

3 4 5 6
1 M 0 (1) 0 (0) 2
2 0 (1) M 1 3
5 0 (0) 1 M 0 (2)
6 1 3 0 (1) M

branch on (5,6)
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

C0 = 11

C1 = 15

x4,2 = 0

C2 = 13

x4,2 = 1

C3 = 14

x3,1 = 0

C4 = 13

x3,1 = 1

C5 = 15

x5,6 = 0

C6 = 14

x5,6 = 1
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Branch and bound algorithms

ATSP: Little et al. BB - Example

Compute the lower bound at node 6
include (5,6) and forbid (6,5)

3 4 5
1 M 0 0
2 0 M 1
6 1 3 M -1

C6 = C4 + 1 = 14
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Branch and bound algorithms

ATSP: Little et al. BB - Example

C0 = 11

C1 = 15

x4,2 = 0

C2 = 13

x4,2 = 1

C3 = 14

x3,1 = 0

C4 = 13

x3,1 = 1

C5 = 15

x5,6 = 0

C6 = 14

x5,6 = 1

select node 6
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

Decide on what to branch at node 6

3 4 5
1 M 0 (2) 0 (1)
2 0 (1) M 1
6 0 (2) 2 M

branch on (1,4)
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

C0 = 11

C1 = 15

x4,2 = 0

C2 = 13

x4,2 = 1

C3 = 14

x3,1 = 0

C4 = 13

x3,1 = 1

C5 = 15

x5,6 = 0

C6 = 14

x5,6 = 1

C7 = 16

x1,4 = 0

C8 = 15

x1,4 = 1
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Branch and bound algorithms

ATSP: Little et al. BB - Example

Compute the lower bound at node 8
include (1,4) and forbid (2,3)

3 5
2 M 1
6 0 M

-1

2x2 matrix: only two feasible arcs left to complete the tour!
C8 = C6 + 1 = 15
4-2-5-6-3-1-4
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Branch and bound algorithms

ATSP: Little et al. BB - Example

C0 = 11

C1 = 15

x4,2 = 0

X C2 = 13

x4,2 = 1

C3 = 14

x3,1 = 0

C4 = 13

x3,1 = 1

C5 = 15

x5,6 = 0

X C6 = 14

x5,6 = 1

C7 = 16

x1,4 = 0

X C8 = 15

x1,4 = 1

TSP solution at node 8 → prune nodes 1, 5 and 7 and select node 3
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

Decide on what to branch at node 3
(x42 = 1, x3,1 = 0)

1 3 4 5 6
1 M 3 0 0 2
2 0 0 M 1 3
3 M M 1 3 1 -1
5 1 0 1 M 0
6 2 1 3 0 M
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Branch and bound algorithms

ATSP: Little et al. BB - Example

Decide on what to branch at node 3
(x4,2 = 1, x3,1 = 0)

1 3 4 5 6
1 M 3 0 (0) 0 (0) 2
2 0 (1) 0 (0) M 1 3
3 M M 0 (0) 2 0 (0)
5 1 0 (0) 1 M 0 (0)
6 2 1 3 0 (1) M

branch on (6,5)
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

C0 = 11

C1 = 15

x4,2 = 0

X C2 = 13

x4,2 = 1

C3 = 14

x3,1 = 0

C4 = 13

x3,1 = 1

C5 = 15

x5,6 = 0

X C6 = 14

x5,6 = 1

C7 = 16

x1,4 = 0

X C8 = 15

x1,4 = 1

C9 = 16

x6,5 = 0

C10 = 16

x6,5 = 1
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

Compute the lower bound at node 10
(remove row 6 and column 5, set (5,6) to M)

1 3 4 6
1 M 3 0 2
2 0 0 M 3
3 M M 0 0
5 1 0 1 M

C10 = C3 = 14
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

C0 = 11

C1 = 15

x4,2 = 0

X C2 = 13

x4,2 = 1

C3 = 14

x3,1 = 0

C4 = 13

x3,1 = 1

C5 = 15

x5,6 = 0

X C6 = 14

x5,6 = 1

C7 = 16

x1,4 = 0

X C8 = 15

x1,4 = 1

C9 = 16

x6,5 = 0

X C10 = 14

x6,5 = 1

prune node 9 and select node 10
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

Decide on what to branch at node 10

1 3 4 6
1 M 3 0 (2) 2
2 0 (1) 0 (0) M 3
3 M M 0 (0) 0 (2)
5 1 0 (1) 1 M

branch on (3,6)
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

C0 = 11

C1 = 15

x4,2 = 0

X C2 = 13

x4,2 = 1

C3 = 14

x3,1 = 0

C4 = 13

x3,1 = 1

C5 = 15

x5,6 = 0

X C6 = 14

x5,6 = 1

C7 = 16

x1,4 = 0

X C8 = 15

x1,4 = 1

C9 = 16

x6,5 = 0

X C10 = 14

x6,5 = 1

C11 = 16

x3,6 = 0

C12 = 15

x3,6 = 1
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

Compute the lower bound at node 12
((3,6)(6,5) → forbid (5,3))

1 3 4
1 M 3 0
2 0 0 M
5 1 M 1 -1

C12 = C10 + 1 = 15
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Traveling salesman problems

Branch and bound algorithms

ATSP: Little et al. BB - Example

C0 = 11

C1 = 15

x4,2 = 0

X C2 = 13

x4,2 = 1

C3 = 14

x3,1 = 0

C4 = 13

x3,1 = 1

C5 = 15

x5,6 = 0

X C6 = 14

x5,6 = 1

C7 = 16

x1,4 = 0

X C8 = 15

x1,4 = 1

C9 = 16

x6,5 = 0

X C10 = 14

x6,5 = 1

C11 = 16

x3,6 = 0

X C12 = 15

x3,6 = 1

X

prune nodes 11 and 12 → optimality proved
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Branch and bound algorithms

ATSP: Carpaneto-Toth BB algorithm

Notation

k . . .node in the BB tree

Ek . . .set of excluded arcs

Ik . . .set of included arcs

Q . . .queue of unprocessed nodes

Source: G. Carpaneto, P. Toth (1980) Some new branching and bounding criteria for the asymmetric travelling
salesman problem. Management Science 26:736–743.

E. Balas, P. Toth (1990) Branch and bound methods. In E.L. Lawler J.K. Lenstra, A.H.G. Rinnooy Kan, D.B.

Shmoys (Eds) ’The traveling salesman problem’.
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Traveling salesman problems

Branch and bound algorithms

ATSP: Carpaneto-Toth BB algorithm

a slightly simplified version

1 relaxation (lower bound) modified assignment problem
(MAP); AP with additional constraints: excluded and
included arcs.

2 choose a node k from Q (the one with the smallest cost
value of the associated MAP).

3 branching scheme at node k choose the subtour q with the
minimum number of arcs not included in Ik. Aq is now the
set of not included arcs of subtour q,
Aq = {(i1, f1), (i2, f2), . . . , (iv , fv)}. v child nodes are
created. For each child node r = 1, . . . , v (v + 1 = 1)

Ekr = Ek ∪ {(ir, ir+1)}

Ikr = Ik ∪ {(i1, i2), . . . , (ir−1, ir)}
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Branch and bound algorithms

ATSP: Carpaneto-Toth BB - Example

Root node k = 0
I0 = {}, E0 = {}, CMAP

0 =? (lower bound)

1 2 3 4 5 6
1 M 7 4 2 1 3 -1
2 3 M 3 2 4 6 -2
3 2 3 M 4 5 3 -2
4 7 1 5 M 4 4 -1
5 4 4 3 5 M 3 -3
6 4 3 3 6 2 M -2
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Traveling salesman problems

Branch and bound algorithms

ATSP: Carpaneto-Toth BB - Example

Root node k = 0
I0 = {}, E0 = {}, CMAP

0 =? (lower bound)

1 2 3 4 5 6

1 M 6 3 1 0 2 X

2 1 M 1 0 2 4

3 0 1 M 2 3 1

4 6 0 4 M 3 3

5 1 1 0 2 M X0
6 2 1 1 4 X0 M X

X

reduction constant = 1+2+2+1+3+2=11
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Traveling salesman problems

Branch and bound algorithms

ATSP: Carpaneto-Toth BB - Example

Root node k = 0
I0 = {}, E0 = {}, CMAP

0 =? (lower bound)

1 2 3 4 5 6
1 M 5 2 0 0 1 X
2 1 M 1 0 3 4
3 0 1 M 2 4 1
4 6 0 4 M 4 3
5 1 1 0 2 M 0
6 1 0 0 3 0 M X

X

reduction constant = 1+2+2+1+3+2=11

smallest value in uncovered cells: 1
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Branch and bound algorithms

ATSP: Carpaneto-Toth BB - Example

Root node k = 0
I0 = {}, E0 = {}, CMAP

0 =? (lower bound)

1 2 3 4 5 6

1 M 5 2 X0 0 1

2 1 M 1 0 3 4

3 0 1 M 2 4 1

4 6 0 4 M 4 3

5 1 1 X0 2 M 0

6 1 X0 0 3 X0 M

reduction constant = 1+2+2+1+3+2+1=12

CMAP
0 = 12

Subcycles:
1-5-6-3-1
2-4-2
branch on 2-4-2
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Branch and bound algorithms

ATSP: Carpaneto-Toth BB - Example

C0 = 12

C1 = 13

x2,4 = 0

C2 = 12

x2,4 = 1
x4,2 = 0

LB = 12
UB = ∞

k = 0 Node 1 is generated
I1 = {}, E1 = {(2, 4)},
CMAP
1 =?

1 2 3 4 5 6

1 M 5 2 0 X0 1

2 X0 0 1 M 0 01 M 2 3

3 0 1 M 2 4 1

4 6 0 4 M 4 3

5 1 1 X0 2 M 0

6 1 X0 X0 3 0 M

C
MAP
1 = 13

1-4-2-3-1
5-6-5
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Branch and bound algorithms

ATSP: Carpaneto-Toth BB - Example

C0 = 12

C1 = 13

x2,4 = 0

C2 = 15

x2,4 = 1
x4,2 = 0

LB = 13
UB = ∞

k = 0 Node 2 is generated
I2 = {(2, 4)}, E2 = {(4, 2)},
CMAP
2 =?

1 2 3 5 6

1 M 5 2 0 1

3 0 1 M 4 1

4 2 M 3 3 0 03 -3

5 1 1 0 M X0

6 1 0 X0 X0 M

C
MAP
2 = 15

1-5-3-1
2-4-6-2
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Branch and bound algorithms

ATSP: Carpaneto-Toth BB - Example

C0 = 12

C1 = 13

x2,4 = 0

C2 = 15

x2,4 = 1
x4,2 = 0

C3 = 14

x5,6 = 0

C4 = 15

x5,6 = 1
x6,5 = 0

LB = 13
UB = ∞

k = 1 Node 3 is generated
I3 = {}, E3 = {(2, 4), (5, 6)},
CMAP
3 =?

1 2 3 4 5 6

1 M 5 2 0 X0 X001

2 0 M X0 M 2 2

3 X0 1 M 2 4 0 0 1

4 6 0 4 M 4 2

5 1 1 0 2 M M

6 1 X0 X0 3 0 M
-1

C
MAP
3 = 14

1-4-2-1
3-6-5-3
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Branch and bound algorithms

ATSP: Carpaneto-Toth BB - Example

C0 = 12

C1 = 13

x2,4 = 0

C2 = 15

x2,4 = 1
x4,2 = 0

C3 = 14

x5,6 = 0

C4 = 15

x5,6 = 1
x6,5 = 0

LB = 13
UB = ∞

k = 1 Node 4 is generated
I4 = {(5, 6)},
E4 = {(2, 4), (6, 5)}, CMAP

4 =?

1 2 3 4 5

1 M 5 2 0 X0

2 X0 M 0 M 2 X

3 0 1 M 2 4 X

4 6 0 4 M 4 X
6 1 X0 X0 3 M X

X X X
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ATSP: Carpaneto-Toth BB - Example

C0 = 12

C1 = 13

x2,4 = 0

C2 = 15

x2,4 = 1
x4,2 = 0

C3 = 14

x5,6 = 0

C4 = 15

x5,6 = 1
x6,5 = 0

X

LB = 14
UB = 15

k = 1 Node 4 is generated
I4 = {(5, 6)},
E4 = {(2, 4), (6, 5)}, CMAP

4 =?

1 2 3 4 5

1 M 7 4 X0 0

2 0 M X0 M X002 X

3 X0 1 M 0 02 2 X

4 6 0 4 M 2 X

6 1 X0 0 1 M X
X X X

smallest value in uncovered cells: 2
alternative solutions!
TSP: 1-5-6-3-4-2-1
C

TSP
4 = 15
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Branch and bound algorithms

ATSP: Carpaneto-Toth BB - Example

C0 = 12

C1 = 13

x2,4 = 0

C2 = 15

x2,4 = 1
x4,2 = 0

X

C3 = 14

x5,6 = 0

C4 = 15

x5,6 = 1
x6,5 = 0

C5 =

x1,4 = 0

X C6 =

x1,4 = 1
x4,2 = 0

C7 =

x1,4 = x4,2 = 1
x2,1 = 0

LB = 14
UB = 15

k = 3 Node 5 is generated
I5 = {},
E5 = {(2, 4), (5, 6), (1, 4)},
CMAP
5 =?

1 2 3 4 5 6
1 M 5 2 M 0 0
2 0 M 0 M 2 2
3 0 1 M 2 4 0
4 6 0 4 M 4 2
5 1 1 0 2 M M
6 1 0 0 3 0 M

-2

lower bound on C
MAP
5 = 16

16 > UB!
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Branch and bound algorithms

ATSP: Carpaneto-Toth BB - Example

C0 = 12

C1 = 13

x2,4 = 0

C2 = 15

x2,4 = 1
x4,2 = 0

X

C3 = 14

x5,6 = 0

C4 = 15

x5,6 = 1
x6,5 = 0

C5 =

x1,4 = 0

X C6 =

x1,4 = 1
x4,2 = 0

X C7 =

x1,4 = x4,2 = 1
x2,1 = 0

LB = 14
UB = 15

k = 3 Node 6 is generated
I6 = {(1, 4)},
E6 = {(2, 4), (5, 6)(4, 2)},
CMAP
6 =?

1 2 3 5 6
2 0 M 0 2 2
3 0 1 M 4 0
4 6 M 4 4 2 -2
5 1 1 0 M M
6 1 0 0 0 M

lower bound on C
MAP
6 = 16

16 > UB!
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C0 = 12

C1 = 13

x2,4 = 0

C2 = 15

x2,4 = 1
x4,2 = 0

X

C3 = 14

x5,6 = 0

C4 = 15

x5,6 = 1
x6,5 = 0

C5 =

x1,4 = 0

X C6 =

x1,4 = 1
x4,2 = 0

X C7 =

x1,4 = x4,2 = 1
x2,1 = 0

X

LB = 15
UB = 15

k = 3 Node 7 is generated
I7 = {(1, 4), (4, 2)},
E7 = {(2, 4), (5, 6), (2, 1)},
CMAP
7 =?

1 3 5 6
2 M 0 2 2
3 0 M 4 0
5 1 0 M M
6 1 0 0 M

cost reduction: 1
lower bound on C

MAP
7 = 15

15 ≥ UB!
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