Transportation Logistics

Part II: Location problems and the design of transportation networks

Production sites

Central warehouses
Full-truckload/tours

Distributing warehouses
Less-than-truckload tours

Customers

Production sites

Central warehouses
Full-truckload/tours
Distributing warehouses

Less-than-truckload tours

Customers

How many warehouses shall be built?
Which warehouses shall be built?
How should the transportation network be designed?

Location problems and the design of transportation networks
Location problems

Median problems

b_{i}...weight of node i
$d_{i j} \ldots$ distance between nodes i and j

Location problems and the design of transportation networks
Location problems

Median problems

b_{i}...weight of node i
$d_{i j \ldots \text {...distance between nodes } i \text { and } j}$
Undirected graph
Median: the node with the shortest weighted distance to all other nodes
$\min _{i \in V} \sigma(i)$ and $\sigma(i)=\sum_{j \in V} d_{i j} b_{j}$.

Median problems

$b_{i} \ldots$ weight of node i
$d_{i j \ldots \text {...distance between nodes } i \text { and } j}$

Undirected graph

Median: the node with the shortest weighted distance to all other nodes
$\min _{i \in V} \sigma(i)$ and $\sigma(i)=\sum_{j \in V} d_{i j} b_{j}$.

Directed graph

Out-median: the node with the shortest weighted distance to all other nodes. $\min _{i \in V} \sigma_{\text {out }}(i)$ and $\sigma_{\text {out }}(i)=\sum_{j \in V} d_{i j} b_{j}$. In-median: the node with the shortest weighted distance from all other nodes. $\min _{i \in V} \sigma_{i n}(i)$ and $\sigma_{i n}(i)=\sum_{j \in V} d_{\mathbf{j i}} b_{j}$. Median node i for which $\sigma_{\text {out }}(i)+\sigma_{\text {in }}(i)$ is minimal.

Location problems

Median problems - Example

Source: Domschke, Drexl (1990) Logistik: Standorte, Chapter 3.1.1.

Location problems

Median problems - Example

Which node is the out-median?

Source: Domschke, Drexl (1990) Logistik: Standorte, Chapter 3.1.1.

Location problems

Median problems - Example

$\mathrm{D}=$| | 0 | 12 | 2 | 10 | 6 | 12 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | 3 | 3 | 7 | 5 | | 4 |
| | 12 | 10 | 0 | 8 | 4 | 10 | |
| 4 | 2 | 5 | 0 | 5 | 2 | $b=$ | 3 |
| | 8 | 6 | 9 | 4 | 0 | 6 | |
| 11 | 9 | 12 | 7 | 3 | 0 | | 2 |

Which node is the out-median?
$i=D, \sigma_{\text {out }}(D)=35$

Source: Domschke, Drexl (1990) Logistik: Standorte, Chapter 3.1.1.

Location problems

Median problems - Example

$D=$| 0 | 12 | 2 | 10 | 6 | 12 | | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | 3 | 3 | 7 | 5 | | 0 |
| 12 | 10 | 0 | 8 | 4 | 10 | | 2 |
| 4 | 2 | 5 | 0 | 5 | 2 | $b=$ | 3 |
| 8 | 6 | 9 | 4 | 0 | 6 | | 1 |
| 11 | 9 | 12 | 7 | 3 | 0 | | 2 |

Which node is the out-median?
$i=D, \sigma_{\text {out }}(D)=35$
Which node is the in-median?

Source: Domschke, Drexl (1990) Logistik: Standorte, Chapter 3.1.1.

Location problems and the design of transportation networks

Location problems

Median problems - Example

$\mathrm{D}=$| | 0 | 12 | 2 | 10 | 6 | 12 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | 3 | 3 | 7 | 5 | | 4 |
| | 12 | 10 | 0 | 8 | 4 | 10 | |
| 4 | 2 | 5 | 0 | 5 | 2 | $b=$ | 2 |
| 3 | 6 | 9 | 4 | 0 | 6 | | 1 |
| | 11 | 9 | 12 | 7 | 3 | 0 | |
| | | | | | | | |

Which node is the out-median?
$i=D, \sigma_{\text {out }}(D)=35$
Which node is the in-median?
$i=E, \sigma_{\text {in }}(E)=53$
Source: Domschke, Drexl (1990) Logistik: Standorte, Chapter 3.1.1.

Uncapacitated warehouse location problems (WLP)

We will first consider its simplest version, that is, the single stage/single level problem:

Warehouses (m)

Customers (n)

Uncapacitated warehouse location problems (WLP)

We will first consider its simplest version, that is, the single stage/single level problem:

Warehouses (m)
Full truck load transportation

Customers (n)

There are n customers, each with a given demand. The company aims at reducing their distribution costs. In order to achieve this goal, it plans to setup and operate distributing warehouses.
There are m potential locations available. If a warehouse is built at site i fixed of f_{i} EUR occur. The transportation costs for transporting the entire demand of customer j from warehouse i are given by $c_{i j}$ EUR.

Uncapacitated warehouse location problems (WLP)

We want to minimize the total transportation and holding costs under the condition that the demands of all customers are satisfied.

- How many warehouses shall be built?
- At which locations shall they be built?

Note that ...
... in the uncapacitated case it is never necessary to supply a customer from more than one warehouse.

Location problems

WLP: Two possible solutions

Solution 1: build all warehouses

i, j	1	2	3	4	5	6	7	f_{i}
1	1	2	10	9	6	7	3	5
2	2	9	0	7	3	6	10	7
3	7	6	1	5	3	10	5	5
4	6	5	10	2	6	3	6	6
5	6	4	6	3	7	2	6	5

fixed costs $=5+7+5+6+5=28$
transportation costs $=$
$1+2+0+2+3+2+3=13$
total costs $=28+13=41$

WLP: Two possible solutions

Solution 1: build all warehouses

i, j	1	2	3	4	5	6	7	f_{i}
1	1	2	10	9	6	7	3	5
2	2	9	0	7	3	6	10	7
3	7	6	1	5	3	10	5	5
4	6	5	10	2	6	3	6	6
5	6	4	6	3	7	2	6	5

fixed costs $=5+7+5+6+5=28$
transportation costs $=$
$1+2+0+2+3+2+3=13$
total costs $=28+13=41$

Solution 2: build only two: warehouse 1 and 3

i, j	1	2	3	4	5	6	7	f_{i}
1	1	2	10	9	6	7	3	5
3	7	6	1	5	3	10	5	5

fixed costs $=5+5=10$ transportation costs $=$
$1+2+1+5+3+7+3=22$
total costs $=10+22=32$

Source: Domschke, Drexl (1990) Logistik: Standorte, Chapter 3.3.1

Location problems and the design of transportation networks

Location problems

WLP: MIP formulation

- in the case where the locations/warehouses are already selected:
- the total costs can be calculated immediately
- BUT: $2 m-1$ selection possibilities (for $m=10 \rightarrow 1023$ possible solutions; m...number of potential warehouse locations)

WLP: MIP formulation

- in the case where the locations/warehouses are already selected:
- the total costs can be calculated immediately
- BUT: $2 m-1$ selection possibilities (for $m=10 \rightarrow 1023$ possible solutions; m...number of potential warehouse locations)

Formulation in terms of a Mixed Integer Program (MIP)
$y_{i}=\left\{\begin{array}{l}1, \text { if at location } i \text { a warehouse is built, } \\ 0, \text { otherwise. }\end{array}\right.$
$x_{i j}=$ share of customer j 's demand that is covered by warehouse i
$y_{i} \ldots$ binary, $x_{i j} \ldots$ continuous, $i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}$

WLP: MIP formulation

- in the case where the locations/warehouses are already selected:
- the total costs can be calculated immediately
- BUT: $2 m-1$ selection possibilities (for $m=10 \rightarrow 1023$ possible solutions; m...number of potential warehouse locations)

Formulation in terms of a Mixed Integer Program (MIP)
$y_{i}=\left\{\begin{array}{l}1, \text { if at location } i \text { a warehouse is built, } \\ 0, \text { otherwise. }\end{array}\right.$
$x_{i j}=$ share of customer j 's demand that is covered by warehouse i
$y_{i} \ldots$ binary, $x_{i j} \ldots$ continuous, $i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}$
How many decision variables do we have?

Location problems and the design of transportation networks

Location problems

WLP: MIP formulation

$$
\begin{array}{rlrl}
Z(x, y)=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}+\sum_{i=1}^{m} f_{i} y_{i} & \rightarrow \min \\
x_{i j} \leq y_{i} & & \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\} \\
\sum_{i=1}^{m} x_{i j} & =1 & \forall j \in\{1, \ldots, n\} \\
y_{i} & \in\{0,1\} & \forall i \in\{1, \ldots, m\} \\
x_{i j} \geq 0 & & \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}
\end{array}
$$

Location problems and the design of transportation networks

Location problems

WLP: MIP formulation

$$
\begin{array}{rlrl}
Z(x, y)=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}+\sum_{i=1}^{m} f_{i} y_{i} & \rightarrow \min \\
x_{i j} & \leq y_{i} & & \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\} \\
\sum_{i=1}^{m} x_{i j} & =1 & & \forall j \in\{1, \ldots, n\} \\
y_{i} & \in\{0,1\} & & \forall i \in\{1, \ldots, m\} \\
x_{i j} & \geq 0 & & \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}
\end{array}
$$

The objective function (1) minimizes total transportation and site costs.

Location problems and the design of transportation networks

Location problems

WLP: MIP formulation

$$
\begin{array}{rlrl}
Z(x, y)=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}+\sum_{i=1}^{m} f_{i} y_{i} & \rightarrow \min \\
x_{i j} & \leq y_{i} & & \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\} \\
\sum_{i=1}^{m} x_{i j} & =1 & & \forall j \in\{1, \ldots, n\} \\
y_{i} & \in\{0,1\} & \forall i \in\{1, \ldots, m\} \\
x_{i j} & \geq 0 & & \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}
\end{array}
$$

The objective function (1) minimizes total transportation and site costs.
Constraints (2) ensure that a customer can only be served by a warehouse that is built.

Location problems and the design of transportation networks

Location problems

WLP: MIP formulation

$$
\begin{array}{rlrl}
Z(x, y)=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}+\sum_{i=1}^{m} f_{i} y_{i} & \rightarrow \min \\
x_{i j} \leq y_{i} & & \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\} \\
\sum_{i=1}^{m} x_{i j} & =1 & \forall j \in\{1, \ldots, n\} \\
y_{i} & \in\{0,1\} & \forall i \in\{1, \ldots, m\} \\
x_{i j} \geq 0 & & \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}
\end{array}
$$

The objective function (1) minimizes total transportation and site costs.
Constraints (2) ensure that a customer can only be served by a warehouse that is built.
Constraints (3) ensure that the entire demand of customer j is delivered.

Location problems and the design of transportation networks Location problems

WLP: MIP formulation

Difficulty

$m^{*} n$ continuous variables and m binary variables \rightarrow for larger instances, the computation of optimal solutions becomes time consuming.
Solution: employ heuristics

WLP: MIP formulation

Difficulty

$m^{*} n$ continuous variables and m binary variables \rightarrow for larger instances, the computation of optimal solutions becomes time consuming.
Solution: employ heuristics

Classification of heuristics

- Construction heuristics (to obtain a feasible initial solution)
- Improvement heuristics (to improve on a given initial solution)

WLP: construction heuristic ADD

Notation

$I=\{1, \ldots, m\}$	set of all potential warehouse locations. set of definitely forbidden locations.
I_{0}	set of potentially forbidden locations. $I_{0}^{\text {pot }}$
I_{1}	set of definitely realized locations. savings in transportation costs if location i is realized in addition to the already selected.
ω_{i}	total costs (objective value).
Z	

WLP: construction heuristic ADD

- Initialization

- determine which location should be realized if exactly one warehouse is built: for each warehouse location i calculate $c_{i}=\sum_{j}^{m} c_{i j}$; select location k with the smallest cost value $c_{k}+f_{k}$
- set $I_{1}=\{k\}, I_{0}^{p o t}=I \backslash\{k\}$ and $Z=c_{k}+f_{k}$
- calculate the savings in transportation costs $\omega_{i j}=\max \left\{c_{k j}-c_{i j}, 0\right\}$ for each i in $I_{0}^{p o t}$ and all customers j, and the row sum $\omega_{i}=\sum_{j=1}^{n} \omega_{i j}$

Location problems and the design of transportation networks Location problems

WLP: ADD - Initialization

$c_{i j}$	1	2	3	4	5	6	7	f_{i}	c_{i}	$f_{i}+c_{i}$
1	1	2	10	9	6	7	3	5	38	43
2	2	9	0	7	3	6	10	7	37	44
3	7	6	1	5	3	10	5	5	37	42
4	6	5	10	2	6	3	6	6	38	44
5	6	4	6	3	7	2	6	5	34	39

Location problems and the design of transportation networks Location problems

WLP: ADD - Initialization

$c_{i j}$	1	2	3	4	5	6	7	f_{i}	c_{i}	$f_{i}+c_{i}$
1	1	2	10	9	6	7	3	5	38	43
2	2	9	0	7	3	6	10	7	37	44
3	7	6	1	5	3	10	5	5	37	42
4	6	5	10	2	6	3	6	6	38	44
5	6	4	6	3	7	2	6	5	34	39

first location $k=5$ with $Z:=c_{5}+f_{5}=39, I_{1}=\{5\}$, $I_{0}^{\text {pot }}=\{1,2,3,4\}$

WLP: ADD - Initialization

$c_{i j}$	1	2	3	4	5	6	7	f_{i}	c_{i}	$f_{i}+c_{i}$
1	1	2	10	9	6	7	3	5	38	43
2	2	9	0	7	3	6	10	7	37	44
3	7	6	1	5	3	10	5	5	37	42
4	6	5	10	2	6	3	6	6	38	44
5	6	4	6	3	7	2	6	5	34	39

first location $k=5$ with $Z:=c_{5}+f_{5}=39, I_{1}=\{5\}$,
$I_{0}^{\text {pot }}=\{1,2,3,4\}$

$\omega_{i j}$	1	2	3	4	5	6	7	ω_{i}	f_{i}	diff
1	5	2			1		3	11	5	6
2	4		6		4			14	7	7
3			5		4		1	10	5	5
4				1	1			2	6	-4

WLP: construction heuristic ADD

- Iteration step
- in each iteration exactly one potential location $k \in I_{0}^{\text {pot }}$ becomes part of the set I_{1}; it is the one with the largest value for $\omega_{k}-f_{k}$
- set $I_{1}=I_{1} \cup\{k\}, I_{0}^{\text {pot }}=I_{0}^{\text {pot }} \backslash\{k\}$ and $Z=Z-\omega_{k}+f_{k}$
- all locations i with a negative value for $\omega_{i}-f_{i}$ (fixed costs are greater than the savings in transportation costs) can be definitely forbidden: for all $i \in I_{0}^{\text {pot }}$ with $\omega_{i} \leq f_{i} \rightarrow$ $I_{0}=I_{0} \cup\{i\}$ and $I_{0}^{\text {pot }}=I_{0} \backslash\{i\}$
- for each $i \in I_{0}^{\text {pot }}$ compute $\omega_{i j}=\max \left\{\omega_{i j}-\omega_{k j}, 0\right\}$
- Termination criterion The procedure ends as soon as $I_{0}^{\text {pot }}=\{ \}$.

Result Build a warehouse at all locations $\in I_{1}$ and assign each customer j to the warehouse $h \in I_{1}$ for which $h=\arg \min _{i \in I_{1}}\left\{c_{i j}\right\}$

Transportation Logistics

Location problems and the design of transportation networks Location problems

WLP: ADD - Example cont.

$\omega_{i j}$	1	2	3	4	5	6	7	ω_{i}	f_{i}	diff
1	5	2			1		3	11	5	6
2	4		6		4			14	7	7
3			5		4		1	10	5	5
4				1	1			2	6	-4

Iteration 1

build $k=2$ and forbid $i=4\left(\omega_{4}<f_{4}\right)$
$Z=39-14+7=32$
$I_{0}^{p o t}=\{1,3\}, I_{1}=\{2,5\}, I_{0}=\{4\}$
The new $\omega_{i j}$ matrix $\left(\omega_{i j}=\max \left\{\omega_{i j}-\omega_{k j}, 0\right\}\right)$:

WLP: ADD - Example cont.

$\omega_{i j}$	1	2	3	4	5	6	7	ω_{i}	f_{i}	diff
1	5	2			1		3	11	5	6
2	4		6		4			14	7	7
3			5		4		1	10	5	5
4				1	1			2	6	-4

Iteration 1

build $k=2$ and forbid $i=4\left(\omega_{4}<f_{4}\right)$
$Z=39-14+7=32$
$I_{0}^{p o t}=\{1,3\}, I_{1}=\{2,5\}, I_{0}=\{4\}$
The new $\omega_{i j}$ matrix $\left(\omega_{i j}=\max \left\{\omega_{i j}-\omega_{k j}, 0\right\}\right)$:

$\omega_{i j}$	1	2	3	4	5	6	7	ω_{i}	f_{i}	diff
1	1	2					3	6	5	1
3							1	1	5	-4

Transportation Logistics
Location problems and the design of transportation networks

Location problems

WLP: ADD - Example cont.

$\omega_{i j}$	1	2	3	4	5	6	7	ω_{i}	f_{i}	diff
1	1	2					3	6	5	1
3							1	1	5	-4

Location problems and the design of transportation networks Location problems

WLP: ADD - Example cont.

$\omega_{i j}$	1	2	3	4	5	6	7	ω_{i}	f_{i}	diff
1	1	2					3	6	5	1
3							1	1	5	-4

Iteration 2

build $k=1$ and forbid $i=3\left(\omega_{3}<f_{3}\right)$
$Z=32-6+5=31$
$I_{0}^{p o t}=\{ \}, I_{1}=\{1,2,5\}, I_{0}=\{3,4\}$

WLP: ADD - Example cont.

$\omega_{i j}$	1	2	3	4	5	6	7	ω_{i}	f_{i}	diff
1	1	2					3	6	5	1
3							1	1	5	-4

Iteration 2

build $k=1$ and forbid $i=3\left(\omega_{3}<f_{3}\right)$
$Z=32-6+5=31$
$I_{0}^{p o t}=\{ \}, I_{1}=\{1,2,5\}, I_{0}=\{3,4\}$
Result
$\mathrm{Z}=31$ and warehouses at locations 1,2 , and 5 will be built Customers $1,2,7$ will be served by warehouse 1
Customers 3,5 by warehouse 2
Customers 4,6 by warehouse 5

Location problems and the design of transportation networks

Location problems

WLP: Construction heuristic DROP

Notation

As before: $I=\{1, \ldots, m\}, I_{0}, I_{1}, Z$ plus $I_{1}^{\text {pot }}$ set of all potentially included locations

WLP: Construction heuristic DROP

Notation
As before: $I=\{1, \ldots, m\}, I_{0}, I_{1}, Z$ plus
$I_{1}^{\text {pot }}$ set of all potentially included locations
The DROP heuristic is the opposite approach to the ADD method: we start from a solution where all locations are realized.

WLP: Construction heuristic DROP

Notation

As before: $I=\{1, \ldots, m\}, I_{0}, I_{1}, Z$ plus
$I_{1}^{\text {pot }}$ set of all potentially included locations
The DROP heuristic is the opposite approach to the ADD method: we start from a solution where all locations are realized.

- Initialization
- set $I_{1}^{\text {pot }}=I, I_{0}=I_{1}=\{ \}, Z=\sum_{i=1}^{m} f_{i}+\sum_{j=1}^{m} \min _{i \in I_{1}^{\text {pot }}} c_{i j}$
- Iteration step
- Forbid exactly one potential location from the set $I_{1}^{\text {pot }}$ (based on total costs - select the location that causes the largest decrease in the total costs)
- Move all locations which would cause a cost increase if forbidden from the set $I_{1}^{p o t}$ to the set I_{1}.

WLP: DROP - Example

Initialization $I_{1}^{p o t}=\{1,2,3,4,5\}$
For each column $j=\{1, \ldots, n\}$ identify the smallest cost element $c_{h_{1} j}$ and the second smallest cost element $c_{h_{2} j}$

$c_{i j}$	1	2	3	4	5	6	7	δ_{i}	f_{i}	decr.
1	1	2	10	9	6	7	3	5	5	0
2	2	9	0	7	3	6	10	1	7	6
3	7	6	1	5	3	10	5	0	5	5
4	6	5	10	2	6	3	6	1	6	5
5	6	4	6	3	7	2	6	1	5	4

$c_{h_{1} j}$		1	2	0	2	3	2	3
$c_{h_{2} j}$		2	4	1	3	3	3	5
h_{1}		1	1	2	4	2	5	1
h_{2}		2	5	3	5	3	4	3

$\delta_{i} \ldots$ sum of differences between $c_{h_{2} j}-c_{h_{1} j}$ if i is h_{1} for j - transportation cost increase if i is forbidden.

WLP: DROP - Example

Iteration 1

realize warehouse $1\left(I_{1}=\{1\}, I_{1}^{p o t}=I_{1}^{p o t} \backslash\{1\}\right)$ because $\delta_{i}=f_{i}$ forbid location $2\left(I_{0}=\{2\}, I_{1}^{\text {pot }}=I_{1}^{\text {pot }} \backslash\{2\}\right)$ because it leads to the largest cost reduction $f_{i}-\delta_{i}$.

Iteration 2

$I_{1}^{\text {pot }}=\{3,4,5\}, I_{1}=\{1\}, I_{0}=\{2\}$

if	1	2	3	4	5	6	7	δ_{i}	f_{i}	decr.
1	1	2	10	9	6	7	3	-	-	-
3	7	6	1	5	3	10	5	8	5	-3
4	6	5	10	2	6	3	6	1	6	5
5	6	4	6	3	7	2	6	1	5	4

$c_{h_{1} j}$	1	2	1	2	3	2	3
$c_{h_{2} j}$	6	4	6	3	6	3	5
h_{1}	1	1	3	4	3	5	1
h_{2}	4	5	5	5	1	4	3

warehouse 3 is realized, location 4 is forbidden.

Location problems and the design of transportation networks Location problems

WLP: DROP - Example

Iteration 3

$I_{1}^{\text {pot }}=\{5\}, I_{1}=\{1,3\}, I_{0}=\{2,4\}$

if	1	2	3	4	5	6	7	δ_{i}	f_{i}	decr.
1	1	2	10	9	6	7	3	-	-	-
3	7	6	1	5	3	10	5	-	-	-
5	6	4	6	3	7	2	6	7	5	-2
$c_{h_{1} j}$	1	2	1	3	3	2	3			
$c_{h_{2} j}$	6	4	6	5	6	7	5			
h_{1}	1	1	3	5	3	5	1			
h_{2}	5	5	5	5	1	1	3			

Warehouse 5 will be built (forbidding it would lead to an increase in total cost of 2)

WLP: DROP - Example

Result

iJ	1	2	3	4	5	6	7	f_{i}
1	1	2	10	9	6	7	3	5
3	7	6	1	5	3	10	5	5
5	6	4	6	3	7	2	6	5

Locations $I_{1}=\{1,3,5\}$ are built.
Customers $1,2,7$ are supplied by warehouse 1
Customers 3,5 by warehouse 3
Customers 4,6 by warehouse 5
$Z=30$ (slightly better result than from ADD algorithm)

WLP: improvement methods

- exchange one location from set I_{1} with one from the set I_{0}
- swap those two that lead to the largest cost savings (best improvement)
- swap the first two that lead to a cost decrease (first improvement)
- combine ADD and DROP
- use the DROP-rules to forbid the location that leads to the largest cost reduction (or the smallest cost increase) then add customer locations using the ADD-algorithm until no additional cost reduction is possible.
- use the ADD-algorithm to add the location that leads to the largest cost reduction (or with the smallest cost increase) and then use the DROP-algorithm to remove locations until no additional cost reduction is possible.

The design of transportation networks: the transportation problem (TP)
capacity restrictions at the production sites
The per unit transportation cost matrix:

	Customer				
production site	V1	V2	V3	V4	capacity
F1	10	5	6	11	25
F2	1	2	7	4	25
F3	9	1	4	8	50
demand	15	20	30	35	$\sum 100$

total capacity $=$ total demand!

Location problems and the design of transportation networks
The design of transportation networks

TP: Model formulation

$m \quad$ number of productions sites, $i \in\{1, \ldots, m\}$
$s_{i} \quad$ supply of production site i
$n \quad$ number of customers, $j \in\{1, \ldots, n\}$
$d_{i} \quad$ demand of customer i
$c_{i j} \quad$ per unit transportation cost from i to j
$x_{i j} \quad$ decision variable: amount of demand of i supplied by j

Location problems and the design of transportation networks
The design of transportation networks

TP: Model formulation

$m \quad$ number of productions sites, $i \in\{1, \ldots, m\}$
$s_{i} \quad$ supply of production site i
$n \quad$ number of customers, $j \in\{1, \ldots, n\}$
$d_{i} \quad$ demand of customer i
$c_{i j} \quad$ per unit transportation cost from i to j
$x_{i j}$ decision variable: amount of demand of i supplied by j

$$
\begin{array}{rlrl}
Z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} & \rightarrow \min & \\
\sum_{j=1}^{n} x_{i j} & =s_{i} & & \forall i \in\{1, \ldots, m\} \\
\sum_{i=1}^{m} x_{i j} & =d_{j} & & \forall j \in\{1, \ldots, n\} \\
x_{i j} & \geq 0 & & i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\} \tag{8}
\end{array}
$$

© R.F. supply, should

Location problems and the design of transportation networks
The design of transportation networks

TP: solution methods

Solution methods

- heuristic
- Vogel's approximation method
- Northwest corner rule
- Column minima method
- exact
- find a basic solution heuristically
- apply transportation simplex method

TP: Vogel's approximation

(1) for each row and column remaining under consideration, calculate its difference ($=$ the arithmetic difference between and smallest and next-to-the-smallest unit costs $c_{i j}$ still remaining in that row or column; if two tie, then the difference is 0)
(2) in the row or column having the largest difference select the variable with the smallest remaining unit cost. (ties may be broken arbitrarily) Transport as much as possible between the production site and the customer of the selected variable.
(3) if a resource of either row or column is fully used, eliminate the according row or column.
(4) if there remains only one row or column, fill all still remaining cells of this row or column with the required amounts. Otherwise proceed with step 1.

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

i, j	1	2	3	4	supply
1	10	5	6	11	25
2	1	2	7	4	25
3	9	1	4	8	50
demand	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

i, j	1	2	3	4	supply
1	10	5	6	11	25
2	1	2	7	4	25
6	1				
3	1	4	8	50	3
demand	15	20	30	35	100
6	1	2	4		

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

i, j	1	2	3	4	supply
1	10	5	6	11	25
2	15	1			
15	4	25	1		
3	9	1	4	8	50
demand	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

i, j	1	2	3	4	supply
1	${ }^{10}$		5	6	11
2	${ }^{1} 15$	2	7	4	25
	1				
3	9^{9}	1	4	8	50
demand	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

i, j	1	2	3	4	supply
1	${ }^{10}$		5	6	11

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

i, j	1	2	3	4	supply
1	${ }^{10}$		5	6	11

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

i, j	1	2	3	4	supply
1	${ }^{10}$		5	6	11

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

i, j	1	2	3	4	supply
1	${ }^{10}$		5	6	11

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

i, j	1	2	3	4	supply
1	${ }^{10}$		5	6	11

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

i, j	1	2	3	4	supply	
1	10		5		6	11

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

i, j	1	2	3	4	supply
1	10	5	${ }^{6} 25$	11	$25-15$
2	${ }^{1} 15$	2	7	$\begin{array}{\|c} 4 \\ \hline 10 \end{array}$	25 10-12
3	9	${ }^{1} 20$	4	8	503034
demand	15	20	30	3525	100
	8	14	2	43	

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: Vogel's approximation - Example

i, j	1	2	3	4	supply	
1	10		5		6	11
1				25		25
2	1	15	2		7	4

Total costs $=15^{*} 1+20^{*} 1+25^{*} 6+5^{*} 4+10^{*} 4+25^{*} 8=445$

TP: Northwest corner rule

usually used to generate a starting solution for the transportation simplex method; the occupied cells correspond to a basic solution

The table is filled from the north-west corner.

- in each iteration, one cell is filled: the maximum possible value is entered, such that the complete resource of either the row or the column is consumed.
- in the case where the complete column resource is consumed, we move to the right
- in the case where the complete row resource is consumed, we move down

TP: Northwest corner rule

usually used to generate a starting solution for the transportation simplex method; the occupied cells correspond to a basic solution

The table is filled from the north-west corner.

- in each iteration, one cell is filled: the maximum possible value is entered, such that the complete resource of either the row or the column is consumed.
- in the case where the complete column resource is consumed, we move to the right
- in the case where the complete row resource is consumed, we move down

Result since supply $=$ demand there always exists a feasible solution; exactly $m+n-1$ occupied cells (= basic variables) $x_{i j}$ are identified; the remaining $m * n-(m+n-1)$ variables take value 0 ; they are non basic variables (NBV)

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Northwest corner rule - Example 1

i, j	1	2	3	4	s_{i}
1					25
2					25
3					50
d_{j}	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Northwest corner rule - Example 1

i, j	1	2	3	4	s_{i}
1	15				25
2					25
3					50
d_{j}	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Northwest corner rule - Example 1

i, j	1	2	3	4	s_{i}
1	15	10			25
2					25
3					50
d_{j}	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Northwest corner rule - Example 1

i, j	1	2	3	4	s_{i}
1	15	10			25
2		10			25
3					50
d_{j}	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Northwest corner rule - Example 1

i, j	1	2	3	4	s_{i}
1	15	10			25
2		10	15		25
3					50
d_{j}	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Northwest corner rule - Example 1

i, j	1	2	3	4	s_{i}
1	15	10			25
2		10	15		25
3			15		50
d_{j}	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Northwest corner rule - Example 1

i, j	1	2	3	4	s_{i}
1	15	10			25
2		10	15		25
3			15	35	50
d_{j}	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Northwest corner rule - Example 2

sometimes it is necessary to move more than once to the right or down:

i, j	1	2	3	4	s_{i}
1	15	10	5		30
2			20		20
3			25	35	35
d_{j}	15	10	35	25	85

TP: Northwest corner rule - Example 2

sometimes it is necessary to move more than once to the right or down:
\(\left.\begin{array}{|c|c|c|c|c|c|}\hline i, j \& 1 \& 2 \& 3 \& 4 \& s_{i}

\hline 1 \& 15 \& 10 \& 5 \& \& 30

\hline 2 \& \& \& 20 \& \& 20

\hline 3 \& \& \& 25 \& 35 \& 35

\hline d_{j} \& 1 \& 1 \& 10 \& 3 \& 3\end{array}\right) 25\)| | 85 |
| :--- | :--- |

degeneracy

i, j	1	2	3	4	s_{i}
1	10	5			15
2		15	0		15
3			30	20	50
d_{j}	10	20	30	20	80

column or row could be deleted \rightarrow we are only allowed to delete one (arbitrary selection)

TP: Northwest corner rule - Example 2

sometimes it is necessary to move more than once to the right or down:

i, j	1	2	3	4	s_{i}
1	15	10	5		30
2			20		20
3			25	35	35
d_{j}	15	10	35	25	85

degeneracy

i, j	1	2	3	4	s_{i}
1	10	5			15
2		15	0		15
3			30	20	50
d_{j}	10	20	30	20	80

column or row could be deleted \rightarrow we are only allowed to delete one (arbitrary selection)

Advantage: very simple and fast Disadvantage: it neglects the cost factors \rightarrow bad starting solutions

TP: Column minima method

- in each iteration, in the most left (not yet deleted) column select the smallest not yet deleted $c_{i j}$ value and determine the maximum possible value for $x_{i j}$
- in the case where the column resource is consumed \rightarrow delete column j
- in the case where the row resource is consumed \rightarrow delete row i
it is a greedy method
usually better results than the northwest corner rule

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Column minima method - Example

i, j	1	2	3	4	s_{i}
1	10	5	6	${ }^{11}$	25
2	1	2	7	4	25
3	9	1	4	8	50
d_{j}	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Column minima method - Example

i, j	1	2	3	4	s_{i}
1	${ }^{10}$	5	6	${ }^{11}$	25
2	${ }^{1} 15$	2	7	4	25
3	9	1	4	8	50
d_{j}	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Column minima method - Example

i, j	1		2	3	4
1	${ }^{10}$	s_{i}			
2	${ }^{1} 15$	2	7	${ }^{1}$	
3	${ }^{9}$		1	4	8
d_{j}	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Column minima method - Example

i, j	1		2	3	4
1	${ }^{10}$	s_{i}			
2	${ }^{1} 15$	2	${ }^{1}$	11	25
3	${ }^{9}$	${ }^{1} 20$	4	8	50
d_{j}	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Column minima method - Example

i, j	1		2		3
1	${ }^{10}$	5^{5}		6	s_{i}
2	${ }^{1} 15$	2		7	4
3	${ }^{1}$		${ }^{1} 20$	4	8
d_{j}	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Column minima method - Example

i, j	1		2		3
1	${ }^{10}$	5^{5}		6	s^{11}
2	${ }^{1} 15$	2		7	4
3	${ }^{9}$	${ }^{1} 20$	${ }^{4} 30$	8	50
d_{j}	15	20	30	35	100

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Column minima method - Example

i, j	1		2		3	
1	${ }^{10}$	5^{5}		6	${ }^{6}$	
2	${ }^{1} 15$	2		${ }^{7}$		4
3	${ }^{9}$		${ }^{1} 20$	${ }^{4} 30$	8	50
d_{j}	15	20	30	35	100	

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Column minima method - Example

i, j	1		2		3	
1	${ }^{10}$	5^{5}		${ }^{6}$		${ }^{11}$
2	${ }^{1} 15$	2		${ }^{7}$		${ }^{4}$
3	${ }^{9}$		${ }^{1} 20$	${ }^{4} 30$	${ }^{8} 0$	50
d_{j}	15	20	30	35	100	

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Column minima method - Example

i, j	1		2		3	
1	${ }^{10}$	5^{5}		${ }^{6}$		${ }^{11}$
2	${ }^{1} 15$	2		${ }^{7}$		${ }^{4} 10$
3	${ }^{9}$		${ }^{1} 20$	${ }^{4} 30$	${ }^{8} 0$	50
d_{j}	15	20	30	35	100	

Location problems and the design of transportation networks
The design of transportation networks

TP: Column minima method - Example

i, j	1		2		3	
1	${ }^{10}$	5^{5}		${ }^{6}$		${ }^{11} 25$
2	${ }^{1} 15$	25		${ }^{7}$		${ }^{4} 10$
3	${ }^{9}$		${ }^{1} 20$	${ }^{4} 30$	${ }^{8} 0$	50
d_{j}	15	20	30	35	100	

TP: Exact method - MODI, stepping stone The transportation simplex method

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks
TP: Exact method - MODI, stepping stone The transportation simplex method

i, j	1	2	\ldots	n	s_{i}	u_{i}
1	c_{11}	c_{12}	\ldots	$c_{1 n}$	s_{1}	u_{1}
2	c_{21}	c_{22}	\ldots	$c_{2 n}$	s_{2}	u_{2}
\ldots						
m	$c_{m 1}$	$c_{m 2}$	\ldots	$c_{m n}$	s_{m}	u_{m}
d_{j}	d_{1}	d_{2}	\cdots	d_{n}		
v_{j}	v_{1}	v_{2}	\cdots	v_{n}		

Initialization

generate a basic feasible (BF) starting tableau with a starting heuristic

TP: The transportation simplex method

- Iteration step
(1) for the current BF solution calculate the values of the dual variables u_{i} and v_{j} using the following rule [MODI]: $c_{i j}=u_{i}+v_{j}$ whenever $x_{i j}$ is an occupied cell (BV) Their values are not unique.
Rule: set the dual variable to zero that corresponds to the row or column containing the most occupied cells.
(2) For all not occupied cells (NBV), compute $c_{i j}-u_{i}-v_{j}$.
(3) Identify the entering basic variable: it is the NBV with the most negative coefficient.
(4) Increase the entering basic variable and perform the chain reaction: change the other occupied cells. The BV that is the first to receive the value 0 is deleted [stepping stone].
- Termination criterion In case the coefficients of all NBV are non-negative, the optimal solution has been reached.

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Initial solution: northwest corner rule

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6	${ }^{11}$	25	
2	1	${ }^{2} 10$	${ }^{7} 15$	4	25	
3	9	1	${ }^{4} 15$	${ }^{8} 35$	50	
d_{j}	15	20	30	35		
v_{j}						

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Initial solution: northwest corner rule

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6	${ }^{11}$	25	0
2	1	${ }^{2} 10$	${ }^{7} 15$	4	25	
3	9	1	${ }^{4} 15$	${ }^{8} 35$	50	
d_{j}	15	20	30	35		
v_{j}						

Iteration 1 compute the values of the dual variables u_{i} and v_{j}

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Initial solution: northwest corner rule

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$		${ }^{11}$	25	0
2	${ }^{1}$	${ }^{2} 10$	${ }^{7} 15$	4	25	
3	9	${ }^{1}$	${ }^{4} 15$	${ }^{8} 35$	50	
d_{j}	15	20	30	35		
v_{j}	10					

Iteration 1 compute the values of the dual variables u_{i} and v_{j}

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Initial solution: northwest corner rule

i, j	1	2	3	4	s_{i}	u_{i}	
1	${ }^{10} 15$	${ }^{5} 10$		${ }^{11}$	25	0	
2	${ }^{1}$	${ }^{2} 10$	${ }^{7} 15$	4	25		
3	9	${ }^{1}$	${ }^{4} 15$	${ }^{8} 35$	50		
d_{j}	15	20	30	35			
v_{j}	10	5					

Iteration 1 compute the values of the dual variables u_{i} and v_{j}

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Initial solution: northwest corner rule

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6	${ }^{11}$	25	0
2	1	${ }^{2} 10$	${ }^{7} 15$	4	25	-3
3	9	1	${ }^{4} 15$	${ }^{8} 35$	50	
d_{j}	15	20	30	35		
v_{j}	10	5				

Iteration 1 compute the values of the dual variables u_{i} and v_{j}

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Initial solution: northwest corner rule

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$		${ }^{11}$	25	0
2	${ }^{1}$	${ }^{2} 10$	${ }^{7} 15$	4	25	-3
3	9	1	${ }^{4} 15$	${ }^{8} 35$	50	
d_{j}	15	20	30	35		
v_{j}	10	5	10			

Iteration 1 compute the values of the dual variables u_{i} and v_{j}

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Initial solution: northwest corner rule

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6	${ }^{11}$	25	0
2	1	${ }^{2} 10$	${ }^{7} 15$	4	25	-3
3	9	1	${ }^{4} 15$	${ }^{8} 35$	50	-6
d_{j}	15	20	30	35		
v_{j}	10	5	10			

Iteration 1 compute the values of the dual variables u_{i} and v_{j}

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Initial solution: northwest corner rule

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6	${ }^{11}$	25	0
2	1	${ }^{2} 10$	${ }^{7} 15$	4	25	-3
3	9	1	${ }^{4} 15$	${ }^{8} 35$	50	-6
d_{j}	15	20	30	35		
v_{j}	10	5	10	14		

Iteration 1 compute the values of the dual variables u_{i} and v_{j}

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Initial solution: northwest corner rule

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6 -4	${ }^{11}$-3	25	0
2	1 -6	${ }^{2} 10$	${ }^{7} 15$	4 -7	25	-3
3	95	12	${ }^{4} 15$	${ }^{8} 35$	50	-6
d_{j}	15	20	30	35		
v_{j}	10	5	10	14		

Iteration 1 compute the values of the dual variables u_{i} and v_{j} compute the coefficients
$\left(c_{i j}-u_{i}-v_{j}\right)$ of the NBV (empty cells)

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 1 (cont.)

The total costs of the initial solution are $Z=10 * 15+5^{*} 10+$ $2^{*} 10+7^{*} 15+4^{*} 15+8^{*} 35=665$.

In order to check the correctness of our values, in each iteration the primal and the dual objective function values can be compared.
They should be equal:

$$
Z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}=\sum_{i=1}^{m} u_{i} s_{i}+\sum_{j=1}^{n} v_{j} d_{j}
$$

The total costs of the dual solution are given by $25^{*} 0+25^{*}(-3)+$ $50 *(-6)+15 * 10+20 * 5+30 * 10+35 * 14=665$

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 1 (cont.)
The total costs of the initial solution are $Z=10 * 15+5^{*} 10+$ $2 * 10+7^{*} 15+4^{*} 15+8^{*} 35=665$.

In order to check the correctness of our values, in each iteration the primal and the dual objective function values can be compared. They should be equal:

$$
Z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}=\sum_{i=1}^{m} u_{i} s_{i}+\sum_{j=1}^{n} v_{j} d_{j}
$$

The total costs of the dual solution are given by $25 * 0+25^{*}(-3)+$ $50 *(-6)+15^{*} 10+20 * 5+30 * 10+35^{*} 14=665$

The NBV with the most negative coefficient is variable x_{24}. It will © R.F. become the new basic variable.

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 1 (cont.)
The total costs of the initial solution are $Z=10 * 15+5^{*} 10+$ $2 * 10+7^{*} 15+4^{*} 15+8^{*} 35=665$.

In order to check the correctness of our values, in each iteration the primal and the dual objective function values can be compared. They should be equal:

$$
Z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}=\sum_{i=1}^{m} u_{i} s_{i}+\sum_{j=1}^{n} v_{j} d_{j}
$$

The total costs of the dual solution are given by $25 * 0+25^{*}(-3)+$ $50 *(-6)+15^{*} 10+20 * 5+30 * 10+35^{*} 14=665$

The NBV with the most negative coefficient is variable x_{24}. It will © R.F. become the new basic variable.

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 1 (cont.)

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$		-4	-3	25
2	1	-6	${ }^{1} 10$	${ }^{7} 15$	4	-7
3	9	5	1	2	${ }^{4} 15$	${ }^{8} 35$

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 1 (cont.)

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6 -4	$11-3$	25	0
2	1 -6	${ }^{2} 10$	${ }^{7} 15$	4 -7	25	-3
3	95	12	${ }^{4} 15$	${ }^{8} 35$	50	-6
d_{j}	15	20	30	35		
v_{j}	10	5	10	14		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 1 (cont.)

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	${ }^{-4}$	${ }^{11}$	-3	25
2	1	-6	${ }^{2} 10$	${ }^{7} 15$	4	-7
$+\epsilon$	25	-3				
3	9	5	1	2	${ }^{4} 15$	${ }^{8} 35$

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 1 (cont.)

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6 -4	$11-3$	25	0
2	1 -6	${ }^{2} 10$	$\begin{aligned} & \hline 7 \\ & 15-\epsilon \end{aligned}$	$4-7$ +6	25	-3
3	95	12	$15+\epsilon$	8 $35-\epsilon$	50	-6
d_{j}	15	20	30	35		
v_{j}	10	5	10	14		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 1 (cont.)

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6 -4	$11-3$	25	0
2	1 -6	${ }^{2} 10$	$15-\epsilon$	$4-7$ +6	25	-3
3	95	12	$15+\epsilon$	8 $35-\epsilon$	50	-6
d_{j}	15	20	30	35		
v_{j}	10	5	10	14		

because of x_{23} we set $\epsilon=15$

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 1 (cont.)

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6 -4	$11-3$	25	0
2	1 -6	${ }^{2} 10$	$15-\epsilon$	4 $+\boldsymbol{- 7}$	25	-3
3	95	12	$15+\epsilon$	${ }_{8}^{85-\epsilon}$	50	-6
d_{j}	15	20	30	35		
v_{j}	10	5	10	14		

because of x_{23} we set $\epsilon=15$
Thus, x_{23} will become a NBV, $x_{24}=15$, $x_{33}=30$ and $x_{34}=20$

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 1 (cont.)

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6 -4	$11-3$	25	0
2	1 -6	${ }^{2} 10$	$\begin{aligned} & \hline 7 \\ & 15-\epsilon \end{aligned}$	$4-7$ +6	25	-3
3	95	12	$15+\epsilon$	8 $35-\epsilon$	50	-6
d_{j}	15	20	30	35		
v_{j}	10	5	10	14		

because of x_{23} we set $\epsilon=15$
Thus, x_{23} will become
a NBV, $x_{24}=15$,
$x_{33}=30$ and $x_{34}=20$
$\mathrm{Z}=665+\epsilon^{*}(-7)=$ $665-7^{*} 15=560$

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}	
1	${ }^{10} 15$	${ }^{5} 10$	${ }^{6}$	${ }^{11}$	25		
2	${ }^{1}$	${ }^{2} 10$	7	${ }^{4} 15$	25		
3	9	${ }^{1}$	${ }^{4} 30$	${ }^{8} 20$	50		
d_{j}	15	20	30	35			
v_{j}							

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}	
1	${ }^{10} 15$	${ }^{5} 10$	6	${ }^{11}$	25	0	
2	${ }^{1}$	${ }^{2} 10$	7	${ }^{4} 15$	25		
3	9	${ }^{1}$	${ }^{4} 30$	${ }^{8} 20$	50		
d_{j}	15	20	30	35			
v_{j}							

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}	
1	${ }^{10} 15$	${ }^{5} 10$	${ }^{6}$	${ }^{11}$	25	0	
2	${ }^{1}$	${ }^{2} 10$	7	${ }^{4} 15$	25		
3	9	${ }^{1}$	${ }^{4} 30$	${ }^{8} 20$	50		
d_{j}	15	20	30	35			
v_{j}	10						

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6	${ }^{11}$	25	0
2	1	${ }^{2} 10$	7	${ }^{4} 15$	25	
3	9	1	${ }^{4} 30$	${ }^{8} 20$	50	
d_{j}	15	20	30	35		
v_{j}	10	5				

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}	
1	${ }^{10} 15$	${ }^{5} 10$	6	${ }^{11}$	25	0	
2	${ }^{1}$	${ }^{2} 10$	7	${ }^{4} 15$	25	-3	
3	9	${ }^{1}$	${ }^{4} 30$	${ }^{8} 20$	50		
d_{j}	15	20	30	35			
v_{j}	10	5					

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6	${ }^{11}$	25	0
2	${ }^{1}$	${ }^{2} 10$	7	${ }^{4} 15$	25	-3
3	9	${ }^{1}$	${ }^{4} 30$	${ }^{8} 20$	50	
d_{j}	15	20	30	35		
v_{j}	10	5		7		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6	${ }^{11}$	25	0
2	1	${ }^{2} 10$	7	${ }^{4} 15$	25	-3
3	9	1	${ }^{4} 30$	${ }^{8} 20$	50	1
d_{j}	15	20	30	35		
v_{j}	10	5		7		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	6	${ }^{11}$	25	0
2	1	${ }^{2} 10$	7	${ }^{4} 15$	25	-3
3	9	1	${ }^{4} 30$	${ }^{8} 20$	50	1
d_{j}	15	20	30	35		
v_{j}	10	5	3	7		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	63		25	0
2	1 -6	${ }^{2} 10$	77	${ }^{4} 15$	25	-3
3	9 -2	$1-5$	${ }^{4} 30$	${ }^{8} 20$	50	1
d_{j}	15	20	30	35		
v_{j}	10	5	3	7		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	63	114	25	0
2	1 -6	${ }^{2} 10$	77	${ }^{4} 15$	25	-3
3	9 -2	$1-5$	${ }^{4} 30$	${ }^{8} 20$	50	1
d_{j}	15	20	30	35		
v_{j}	10	5	3	7		

x_{21} is the entering BV ;

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks
TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 15$	${ }^{5} 10$	63	${ }^{11} 4$	25	0
2	${ }^{1}-6$	${ }^{2} 10$	77	${ }^{4} 15$	25	-3
3	9 -2	-5	${ }^{4} 30$	${ }^{8} 20$	50	1
d_{j}	15	20	30	35		
v_{j}	10	5	3	7		

x_{21} is the entering BV ;

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}
	10	5	3	114		
1	15- ϵ	$10+\epsilon$			25	0
2	$1-6$ +6	$\begin{aligned} & \hline 2 \\ & 10-\epsilon \end{aligned}$	77	${ }^{4} 15$	25	-3
3	9 -2	$1-5$	${ }^{4} 30$	${ }^{8} 20$	50	1
d_{j}	15	20	30	35		
v_{j}	10	5	3	7		

x_{21} is the entering BV ;

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}
	10	5	3	114		
1	15- ϵ	$10+\epsilon$			25	0
2	$1-6$ +6	$\begin{aligned} & \hline 2 \\ & 10-\epsilon \end{aligned}$	77	${ }^{4} 15$	25	-3
3	9 -2	$1-5$	${ }^{4} 30$	${ }^{8} 20$	50	1
d_{j}	15	20	30	35		
v_{j}	10	5	3	7		

x_{21} is the entering BV ; because of x_{22} we set $\epsilon=10$;

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}
	10	5	3	114		
1	15- ϵ	$10+\epsilon$			25	0
2	$1-6$ +6	$\begin{aligned} & \hline 2 \\ & 10-\epsilon \end{aligned}$	77	${ }^{4} 15$	25	-3
3	9 -2	$1-5$	${ }^{4} 30$	${ }^{8} 20$	50	1
d_{j}	15	20	30	35		
v_{j}	10	5	3	7		

x_{21} is the entering BV ; because of x_{22} we set
$\epsilon=10$;
thus, x_{22} will become a NBV, $x_{21}=10$,
$x_{11}=5$ and $x_{12}=20$

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 2

i, j	1	2	3	4	s_{i}	u_{i}
	10	5	3	114		
1	15- ϵ	$10+\epsilon$			25	0
2	1 1 +6	$\begin{aligned} & \hline 2 \\ & 10-\epsilon \end{aligned}$	77	${ }^{4} 15$	25	-3
3	9 -2	$1-5$	${ }^{4} 30$	${ }^{8} 20$	50	1
d_{j}	15	20	30	35		
v_{j}	10	5	3	7		

x_{21} is the entering BV ; because of x_{22} we set
$\epsilon=10$;
thus, x_{22} will become a NBV, $x_{21}=10$,
$x_{11}=5$ and $x_{12}=20$
$\mathrm{Z}=560+\epsilon^{*}(-6)=$ $560-6 * 10=500$

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 5$	${ }^{5} 20$	6	${ }^{11}$	25	
2	${ }^{1} 10$	2	7	${ }^{4} 15$	25	
3	9	1	${ }^{4} 30$	${ }^{8} 20$	50	
d_{j}	15	20	30	35		
v_{j}						

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}	
1	${ }^{10} 5$	${ }^{5} 20$	6	${ }^{11}$	25	0	
2	${ }^{1} 10$	${ }^{2}$	7	${ }^{4} 15$	25		
3	9	${ }^{1}$	${ }^{4} 30$	${ }^{8} 20$	50		
d_{j}	15	20	30	35			
v_{j}							

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 5$	${ }^{5} 20$	6	${ }^{11}$	25	0
2	${ }^{1} 10$	2	7	${ }^{4} 15$	25	
3	9	1	${ }^{4} 30$	${ }^{8} 20$	50	
d_{j}	15	20	30	35		
v_{j}	10					

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 5$	${ }^{5} 20$	6	${ }^{11}$	25	0
2	${ }^{1} 10$	2	7	${ }^{4} 15$	25	
3	9	1	${ }^{4} 30$	${ }^{8} 20$	50	
d_{j}	15	20	30	35		
v_{j}	10	5				

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks
TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}	
1	${ }^{10} 5$	${ }^{5} 20$	6	${ }^{11}$	25	0	
2	${ }^{1} 10$	${ }^{2}$	7	${ }^{4} 15$	25	-9	
3	9	${ }^{1}$	${ }^{4} 30$	${ }^{8} 20$	50		
d_{j}	15	20	30	35			
v_{j}	10	5					

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 5$	${ }^{5} 20$	6	${ }^{11}$	25	0
2	${ }^{1} 10$	2	7	${ }^{4} 15$	25	-9
3	9	1	${ }^{4} 30$	${ }^{8} 20$	50	
d_{j}	15	20	30	35		
v_{j}	10	5		13		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks
TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 5$	${ }^{5} 20$	6	${ }^{11}$	25	0
2	${ }^{1} 10$	2	7	${ }^{4} 15$	25	-9
3	9	1	${ }^{4} 30$	${ }^{8} 20$	50	-5
d_{j}	15	20	30	35		
v_{j}	10	5		13		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 5$	${ }^{5} 20$	6	${ }^{11}$	25	0
2	${ }^{1} 10$	2	7	${ }^{4} 15$	25	-9
3	9	1	${ }^{4} 30$	${ }^{8} 20$	50	-5
d_{j}	15	20	30	35		
v_{j}	10	5	9	13		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 5$	${ }^{5} 20$	6 -3	11 -2	25	0
2	${ }^{1} 10$	26	7	${ }^{4} 15$	25	-9
3	94		${ }^{4} 30$	${ }^{8} 20$	50	-5
d_{j}	15	20	30	35		
v_{j}	10	5	9	13		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks
TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 5$	${ }^{5} 20$	6 -3	${ }^{11}$-2	25	0
2	${ }^{1} 10$	26	77	${ }^{4} 15$	25	-9
3	4		${ }^{4} 30$	${ }^{8} 20$	50	-5
d_{j}	15	20	30	35		
v_{j}	10	5	9	13		

x_{13} is the entering BV ;

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks
TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 5$	${ }^{5} 20$	6 $+\epsilon$	11-2	25	0
2	${ }^{1} 10$	26	7	${ }^{4} 15$	25	-9
3	94	11	${ }^{4} 30$	${ }^{8} 20$	50	-5
d_{j}	15	20	30	35		
v_{j}	10	5	9	13		

x_{13} is the entering BV ;

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{10} 5$	${ }^{5} 20$	6 $+\epsilon$	11-2	25	0
2	$\begin{array}{\|l\|} \hline 1 \\ 10+\epsilon \end{array}$	26	77	$15-\epsilon$	25	-9
3	94	11	$30-\epsilon$	8 $20+\epsilon$	50	-5
d_{j}	15	20	30	35		
v_{j}	10	5	9	13		

x_{13} is the entering BV ;

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}
1	10	${ }^{5} 20$	$6-3$ +6	$11 \quad-2$	25	0
2	$\begin{aligned} & 1 \\ & 10+\epsilon \end{aligned}$	26		$\begin{array}{\|l\|} \hline 4 \\ 15-\epsilon \end{array}$	25	-9
3	94	11	$30-\epsilon$	$\begin{array}{\|l\|} \hline 8 \\ 20+\epsilon \end{array}$	50	-5
d_{j}	15	20	30	35		
v_{j}	10	5	9	13		

x_{13} is the entering BV ; because of x_{11} we set $\epsilon=5$;

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}
1	10	${ }^{5} 20$	$6-3$ +6	$11 \quad-2$	25	0
2	$\begin{aligned} & 1 \\ & 10+\epsilon \end{aligned}$	26		$\begin{array}{\|l\|} \hline 4 \\ 15-\epsilon \end{array}$	25	-9
3	94	11	$30-\epsilon$	$\begin{array}{\|l\|} \hline 8 \\ 20+\epsilon \end{array}$	50	-5
d_{j}	15	20	30	35		
v_{j}	10	5	9	13		

x_{13} is the entering BV ; because of x_{11} we set
$\epsilon=5$;
thus, x_{11} will become a
NBV, $x_{21}=15$,
$x_{23}=10, x_{33}=25$,
$x_{34}=25$

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 3

i, j	1	2	3	4	s_{i}	u_{i}
1	10	${ }^{5} 20$	$6-3$ +6	$11 \quad-2$	25	0
2	$\begin{aligned} & 1 \\ & 10+\epsilon \end{aligned}$	26		$\begin{array}{\|l\|} \hline 4 \\ 15-\epsilon \end{array}$	25	-9
3	94	11	$30-\epsilon$	$\begin{array}{\|l\|} \hline 8 \\ 20+\epsilon \end{array}$	50	-5
d_{j}	15	20	30	35		
v_{j}	10	5	9	13		

x_{13} is the entering BV ; because of x_{11} we set $\epsilon=5$;
thus, x_{11} will become a
NBV, $x_{21}=15$,
$x_{23}=10, x_{33}=25$,
$x_{34}=25$
$\mathrm{Z}=500+\epsilon^{*}(-3)=$ $500-3 * 5=485$

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}	
1	${ }^{10}$	${ }^{5} 20$	${ }^{6} 5$	${ }^{11}$	25		
2	${ }^{1} 15$	${ }^{2}$	7	${ }^{4} 10$	25		
3	9	${ }^{1}$	${ }^{4} 25$	${ }^{8} 25$	50		
d_{j}	15	20	30	35			
v_{j}							

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}	
1	${ }^{10}$	${ }^{5} 20$	${ }^{6} 5$	${ }^{11}$	25	0	
2	${ }^{1} 15$	${ }^{2}$	7	${ }^{4} 10$	25		
3	9	${ }^{1}$	${ }^{4} 25$	${ }^{8} 25$	50		
d_{j}	15	20	30	35			
v_{j}							

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}
1	10	${ }^{5} 20$	${ }^{6} 5$	${ }^{11}$	25	0
2	${ }^{1} 15$	2	7	${ }^{4} 10$	25	
3	9	1	${ }^{4} 25$	${ }^{8} 25$	50	
d_{j}	15	20	30	35		
v_{j}		5				

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}
1	10	${ }^{5} 20$	${ }^{6} 5$	${ }^{11}$	25	0
2	${ }^{1} 15$	2	7	${ }^{4} 10$	25	
3	9	1	${ }^{4} 25$	${ }^{8} 25$	50	
d_{j}	15	20	30	35		
v_{j}		5	6			

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}
1	10	${ }^{5} 20$	${ }^{6} 5$	${ }^{11}$	25	0
2	${ }^{1} 15$	2	7	${ }^{4} 10$	25	
3	9	1	${ }^{4} 25$	${ }^{8} 25$	50	-2
d_{j}	15	20	30	35		
v_{j}		5	6			

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}
1	10	${ }^{5} 20$	${ }^{6} 5$	${ }^{11}$	25	0
2	${ }^{1} 15$	2	7	${ }^{4} 10$	25	
3	9	1	${ }^{4} 25$	${ }^{8} 25$	50	-2
d_{j}	15	20	30	35		
v_{j}		5	6	10		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}
1	10	${ }^{5} 20$	${ }^{6} 5$	${ }^{11}$	25	0
2	${ }^{1} 15$	2	7	${ }^{4} 10$	25	-6
3	9	1	${ }^{4} 25$	${ }^{8} 25$	50	-2
d_{j}	15	20	30	35		
v_{j}		5	6	10		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}
1	10	${ }^{5} 20$	${ }^{6} 5$	${ }^{11}$	25	0
2	${ }^{1} 15$	2	7	${ }^{4} 10$	25	-6
3	9	1	${ }^{4} 25$	${ }^{8} 25$	50	-2
d_{j}	15	20	30	35		
v_{j}	7	5	6	10		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}
1	103	${ }^{5} 20$	${ }^{6} 5$	${ }^{11} 1$	25	0
2	${ }^{1} 15$	23	7	${ }^{4} 10$	25	-6
3	94	$1-2$	${ }^{4} 25$	${ }^{8} 25$	50	-2
d_{j}	15	20	30	35		
v_{j}	7	5	6	10		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}
1	103	${ }^{5} 20$	${ }^{6} 5$	${ }^{11} 1$	25	0
2	${ }^{1} 15$	23	7	${ }^{4} 10$	25	-6
3	94	1 -2	${ }^{4} 25$	${ }^{8} 25$	50	-2
d_{j}	15	20	30	35		
v_{j}	7	5	6	10		

x_{32} is the entering BV ;

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}
1	103	${ }^{5} 20$	${ }^{6} 5$	${ }^{11} 1$	25	0
2	${ }^{1} 15$	23	7	${ }^{4} 10$	25	-6
3	4	1 1 +6	${ }^{4} 25$	${ }^{8} 25$	50	-2
d_{j}	15	20	30	35		
v_{j}	7	5	6	10		

x_{32} is the entering BV ;

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}
1	103	5 $20-\epsilon$			25	0
2	${ }^{1} 15$	23	7	${ }^{4} 10$	25	-6
3	4	$\begin{array}{\|c} 1 \\ \hline+\epsilon \\ +\epsilon \end{array}$	$25-\epsilon$	${ }^{8} 25$	50	-2
d_{j}	15	20	30	35		
v_{j}	7	5	6	10		

x_{32} is the entering BV ;

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}
1	103	5 $20-\epsilon$			25	0
2	${ }^{1} 15$	23	7	${ }^{4} 10$	25	-6
3	4	$\begin{array}{\|c} 1 \\ \hline+\epsilon \\ +\epsilon \end{array}$	$25-\epsilon$	${ }^{8} 25$	50	-2
d_{j}	15	20	30	35		
v_{j}	7	5	6	10		

x_{32} is the entering BV ; because of x_{12} we set $\epsilon=20$;

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}
1	103	$\frac{5}{22-\epsilon}$	${ }^{6} 5$	${ }^{11} 1$	25	0
2	${ }^{1} 15$	23	77	${ }^{4} 10$	25	-6
3	94	$\begin{gathered} 1-2-2 \\ +\epsilon \end{gathered}$	$25-\epsilon$	${ }^{8} 25$	50	-2
d_{j}	15	20	30	35		
v_{j}	7	5	6	10		

x_{32} is the entering BV ; because of x_{12} we set
$\epsilon=20$;
thus, x_{12} will become a NBV, $x_{13}=25$ and $x_{33}=5$

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 4

i, j	1	2	3	4	s_{i}	u_{i}
1	103	5 $20-\epsilon$			25	0
2	${ }^{1} 15$	23	7	${ }^{4} 10$	25	-6
3	4	$\begin{array}{\|c} 1 \\ \hline+\epsilon \\ +\epsilon \end{array}$	$25-\epsilon$	${ }^{8} 25$	50	-2
d_{j}	15	20	30	35		
v_{j}	7	5	6	10		

x_{32} is the entering BV ; because of x_{12} we set
$\epsilon=20$;
thus, x_{12} will become a NBV, $x_{13}=25$ and $x_{33}=5$
$Z=485+\epsilon^{*}(-2)=$ 485-2*20 $=445$

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 5

i, j	1	2	3	4	s_{i}	u_{i}
1	10	5	${ }^{6} 25$	11	25	
2	${ }^{1} 15$	2	7	${ }^{4} 10$	25	
3	9	${ }^{1} 20$	${ }^{4} 5$	${ }^{8} 25$	50	
d_{j}	15	20	30	35		
v_{j}						

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 5

i, j	1	2	3	4	s_{i}	u_{i}
1	10	5	${ }^{6} 25$	11	25	
2	${ }^{1} 15$	${ }^{2}$	7	${ }^{4} 10$	25	
3	9	${ }^{1} 20$	${ }^{4} 5$	${ }^{8} 25$	50	0
d_{j}	15	20	30	35		
v_{j}						

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 5

i, j	1	2	3	4	s_{i}	u_{i}
1	10	5	${ }^{6} 25$	${ }^{11}$	25	
2	${ }^{1} 15$	2	7	${ }^{4} 10$	25	
3	9	${ }^{1} 20$	${ }^{4} 5$	${ }^{8} 25$	50	0
d_{j}	15	20	30	35		
v_{j}		1				

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 5

i, j	1	2	3	4	s_{i}	u_{i}
1	10	5	${ }^{6} 25$	${ }^{11}$	25	
2	${ }^{1} 15$	2	7	${ }^{4} 10$	25	
3	9	${ }^{1} 20$	${ }^{4} 5$	${ }^{8} 25$	50	0
d_{j}	15	20	30	35		
v_{j}		1	4			

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 5

i, j	1	2	3	4	s_{i}	u_{i}
1	10	5	${ }^{6} 25$	${ }^{11}$	25	
2	${ }^{1} 15$	2	7	${ }^{4} 10$	25	
3	9	${ }^{1} 20$	${ }^{4} 5$	${ }^{8} 25$	50	0
d_{j}	15	20	30	35		
v_{j}		1	4	8		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 5

i, j	1	2	3	4	s_{i}	u_{i}
1	10	5	${ }^{6} 25$	${ }^{11}$	25	2
2	${ }^{1} 15$	2	7	${ }^{4} 10$	25	
3	9	${ }^{1} 20$	${ }^{4} 5$	${ }^{8} 25$	50	0
d_{j}	15	20	30	35		
v_{j}		1	4	8		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 5

i, j	1	2	3	4	s_{i}	u_{i}
1	10	5	${ }^{6} 25$	${ }^{11}$	25	2
2	${ }^{1} 15$	2	7	${ }^{4} 10$	25	-4
3	9	${ }^{1} 20$	${ }^{4} 5$	${ }^{8} 25$	50	0
d_{j}	15	20	30	35		
v_{j}		1	4	8		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 5

i, j	1	2	3	4	s_{i}	u_{i}
1	10	5	${ }^{6} 25$	${ }^{11}$	25	2
2	${ }^{1} 15$	2	7	${ }^{4} 10$	25	-4
3	9	${ }^{1} 20$	${ }^{4} 5$	${ }^{8} 25$	50	0
d_{j}	15	20	30	35		
v_{j}	5	1	4	8		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 5

i, j	1	2	3	4	s_{i}	u_{i}
1	103	2	${ }^{6} 25$	11	25	2
2	${ }^{1} 15$	25	77	${ }^{4} 10$	25	-4
3	94	${ }^{1} 20$	${ }^{4} 5$	${ }^{8} 25$	50	0
d_{j}	15	20	30	35		
v_{j}	5	1	4	8		

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 5

i, j	1	2	3	4	s_{i}	u_{i}
1	103	52	${ }^{6} 25$	11	25	2
2	${ }^{1} 15$	25	77	${ }^{4} 10$	25	-4
3	94	${ }^{1} 20$	${ }^{4} 5$	${ }^{8} 25$	50	0
d_{j}	15	20	30	35		
v_{j}	5	1	4	8		

no negative coefficients
\rightarrow STOP optimal solution found

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 5

i, j	1	2	3	4	s_{i}	u_{i}
1	103	52	${ }^{6} 25$	${ }^{11} 1$	25	2
2	${ }^{1} 15$	25	77	${ }^{4} 10$	25	-4
3	94	${ }^{1} 20$	${ }^{4} 5$	${ }^{8} 25$	50	0
d_{j}	15	20	30	35		
v_{j}	5	1	4	8		

no negative coefficients
\rightarrow STOP optimal
solution found
$Z=445$

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: The transportation simplex method (MODI/stepping stone) - Example

Iteration 5

i, j	1	2	3	4	s_{i}	u_{i}
1	10	3	5	2	${ }^{6} 25$	11
1	25	2				
2	${ }^{1} 15$	2	5	7	7	${ }^{4} 10$
2	25	-4				
3	9	4	${ }^{1} 20$	${ }^{4} 5$	${ }^{8} 25$	50
d_{j}	15	20	30	35		
v_{j}	5	1	4	8		

no negative coefficients
\rightarrow STOP optimal
solution found
$Z=445$
basic variables:

$$
\begin{aligned}
& x_{13}=25 \\
& x_{21}=15 \\
& x_{24}=10 \\
& x_{32}=20 \\
& x_{33}=5 \\
& x_{34}=25
\end{aligned}
$$

TP: Sensitivity analysis

The transportation problem is an LP with equality constraints ($=$). Therefore, the dual variables are unrestricted in sign.

From duality theory we can derive the following. A data change of the following form

$$
\begin{aligned}
& s_{i} \rightarrow s_{i}+\Delta \text { for an } i \text { and } \\
& \qquad d_{j} \rightarrow d_{j}+\Delta \text { for a } j
\end{aligned}
$$

(i.e. small changes in the right hand side RHS) does not change the values of the dual variables u_{i} and v_{j} (basis does not change, solution remains optimal). In this case, the objective function value is only changed by $\Delta\left(u_{i}+v_{j}\right)$:

$$
Z \rightarrow Z+\Delta\left(u_{i}+v_{j}\right)
$$

Obviously, s_{i} and d_{j} have to be changed simultaneously, otherwise total demand and total supply are no longer equal

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: Sensitivity analysis - Example

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{1} 10$	${ }^{4}$	${ }^{2} 12$	5	$22+\Delta$	0
2	${ }^{6}$	${ }^{1} 13$	5	${ }^{6} 11$	24	2
3	${ }^{7}$	5	${ }^{3} 10$	${ }^{5} 6$	16	1
d_{j}	10	$13+\Delta$	22	17		
v_{j}	1	-1	2	4		

The solution given is the optimal solution. ($Z=$ 173)

What happens if the data is changed as follows:

$$
\begin{aligned}
& s_{1} \rightarrow s_{1}+\Delta \\
& d_{2} \rightarrow d_{2}+\Delta
\end{aligned}
$$

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Sensitivity analysis - Example

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{1} 10$	${ }^{4}$	${ }^{2} 12$	5	$22+\Delta$	0
2	${ }^{6}$	${ }^{1} 13$	5	${ }^{6} 11$	24	2
3	${ }^{7}$	5	${ }^{3} 10$	${ }^{5} 6$	16	1
d_{j}	10	$13+\Delta$	22	17		
v_{j}	1	-1	2	4		

The solution given is the optimal solution. ($\mathrm{Z}=$ 173)

What happens if the data is changed as follows:
$s_{1} \rightarrow s_{1}+\Delta$
$d_{2} \rightarrow d_{2}+\Delta$
The objective value of the optimal solution changes to $\mathrm{Z}=173+\Delta\left(u_{1}+v_{2}\right)$ $=173-\Delta$; this means that the costs are reduced, if the amount transported is increased. (This can happen in the case of negative u_{i} and v_{j} values; usually, the costs are more likely to increase.)

Transportation Logistics

Location problems and the design of transportation networks
The design of transportation networks

TP: Sensitivity analysis - Example

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{1} 10$	${ }^{4}$	${ }_{12+\Delta}^{2}$	${ }^{5}$	$22+\Delta$	0
2	${ }^{6}$	$13+\Delta$	5	${ }_{11-\Delta}$	24	2
3	${ }^{7}$	5	${ }^{3} 10-\Delta$	${ }^{5}+\Delta$	16	1
d_{j}	10	$13+\Delta$	22	17		
v_{j}	1	-1	2	4		

What's the maximum value Δ may take such that the current basis remains optimal?

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Sensitivity analysis - Example

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{1} 10$	${ }^{4}$	${ }_{12}^{2}+\Delta$	${ }^{5}$	$22+\Delta$	0
2	${ }^{6}$	$13+\Delta$	${ }^{5}$	${ }_{11-\Delta}$	24	2
3	${ }^{7}$	5	${ }_{1}^{3}-{ }^{-}$	${ }_{6}^{5}+\Delta$	16	1
d_{j}	10	$13+\Delta$	22	17		
v_{j}	1	-1	2	4		

What's the maximum value Δ may take such that the current basis remains optimal?

This value can be identified in a similar way as in the stepping stone step (chain reaction).

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Sensitivity analysis - Example

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{1} 10$	${ }^{4}$	${ }^{2} 2+\Delta$	${ }^{5}$	$22+\Delta$	0
2	${ }^{6}$	$13+\Delta$	5	${ }_{11-\Delta}$	24	2
3	${ }^{7}$	5	${ }^{3} 10-\Delta$	${ }_{6}^{5}+\Delta$	16	1
d_{j}	10	$13+\Delta$	22	17		
v_{j}	1	-1	2	4		

What's the maximum value Δ may take such that the current basis remains optimal?

This value can be identified in a similar way as in the stepping stone step (chain reaction).
x_{33} is the first variable to become 0 , if Δ increases: the upper bound is ≤ 10

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Sensitivity analysis - Example

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{1} 10$	${ }^{4}$	${ }^{2} 2+\Delta$	${ }^{5}$	$22+\Delta$	0
2	${ }^{6}$	$13+\Delta$	5	${ }_{11-\Delta}$	24	2
3	${ }^{7}$	5	${ }^{3} 10-\Delta$	${ }_{6}^{5}+\Delta$	16	1
d_{j}	10	$13+\Delta$	22	17		
v_{j}	1	-1	2	4		

What's the maximum value Δ may take such that the current basis remains optimal?

This value can be identified in a similar way as in the stepping stone step (chain reaction).
x_{33} is the first variable to become 0 , if Δ increases: the upper bound is ≤ 10 x_{34} is the first variable to become 0 , if Δ decreases: the lower bound is ≥-6

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Sensitivity analysis - Example

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{1} 10$	${ }^{4}$	${ }_{12}^{2}+\Delta$	${ }^{5}$	$22+\Delta$	0
2	${ }^{6}$	$13+\Delta$	${ }^{5}$	${ }_{11-\Delta}$	24	2
3	${ }^{7}$	5	${ }_{1}^{3}-{ }^{-}$	${ }_{6}^{5}+\Delta$	16	1
d_{j}	10	$13+\Delta$	22	17		
v_{j}	1	-1	2	4		

What's the maximum value Δ may take such that the current basis remains optimal?

This value can be identified in a similar way as in the stepping stone step (chain reaction).
x_{33} is the first variable to become 0 , if Δ increases: the upper bound is ≤ 10 x_{34} is the first variable to become 0 , if Δ decreases: the lower bound is ≥-6
$-6 \leq \Delta \leq 10$

Transportation Logistics
Location problems and the design of transportation networks
The design of transportation networks

TP: Sensitivity analysis - Example

i, j	1	2	3	4	s_{i}	u_{i}
1	${ }^{1} 10$	${ }^{4}$	${ }_{12}^{2}+\Delta$	${ }^{5}$	$22+\Delta$	0
2	${ }^{6}$	$13+\Delta$	${ }^{5}$	${ }_{11-\Delta}$	24	2
3	${ }^{7}$	5	${ }^{3} 0-\Delta$	${ }_{5}^{5}+\Delta$	16	1
d_{j}	10	$13+\Delta$	22	17		
v_{j}	1	-1	2	4		

What's the maximum value Δ may take such that the current basis remains optimal?

This value can be identified in a similar way as in the stepping stone step (chain reaction).
x_{33} is the first variable to become 0 , if Δ increases: the upper bound is ≤ 10 x_{34} is the first variable to become 0 , if Δ decreases: the lower bound is ≥-6

$$
-6 \leq \Delta \leq 10
$$

Check for correctness: $\mathrm{Z}=$
$1^{*} 10+2^{*}(12+\Delta)+1^{*}(13+\Delta)+6^{*}(11-\Delta)+3^{*}(10-\Delta)+5^{*}(6+\Delta)=173-\Delta$

The capacitated warehouse location problem (CWLP)

The single-level CWLP differs from the uncapacitated WLP only in the assumption that

- the capacity on the potential locations $i=1, \ldots, m$ is bounded by s_{1}, \ldots, s_{m} units (per period)
- the transportation costs $c_{i j}$ are the costs per transported unit
- the demand of the customer is given with d_{1}, \ldots, d_{n} units
- $x_{i j}$ is the amount of goods transported from the warehouse at location i to customer j

Location problems and the design of transportation networks

The capacitated warehouse location problem

CWLP: MIP formulation

$$
\begin{align*}
& Z(x, y)=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}+\sum_{i=1}^{m} f_{i} y_{i} \quad \rightarrow \quad \min \tag{10}\\
& \sum_{j=1}^{n} x_{i j} \leq s_{i} y_{i} \forall i \in\{1, \ldots, m\} \tag{11}\\
& x_{i j} \leq d_{j} y_{i} \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\} \tag{12}\\
& \sum_{i=1}^{m} x_{i j}=d_{j} \forall j \in\{1, \ldots, n\} \\
& y_{i} \in\{0,1\} \forall i \in\{1, \ldots, m\} \tag{13}\\
& x_{i j} \geq 0 \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}
\end{align*}
$$

Location problems and the design of transportation networks

The capacitated warehouse location problem

CWLP: MIP formulation

$$
\begin{array}{rlrl}
Z(x, y)=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}+\sum_{i=1}^{m} f_{i} y_{i} & \rightarrow \min \\
\sum_{j=1}^{n} x_{i j} & \leq s_{i} y_{i} & & \forall i \in\{1, \ldots, m\} \\
x_{i j} & \leq d_{j} y_{i} & \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\} \\
\sum_{i=1}^{m} x_{i j} & =d_{j} & \forall j \in\{1, \ldots, n\} \\
y_{i} & \in\{0,1\} & \forall i \in\{1, \ldots, m\} \\
x_{i j} \geq 0 & & \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}
\end{array}
$$

The objective function (10) minimizes total transportation and site costs.

Location problems and the design of transportation networks

The capacitated warehouse location problem

CWLP: MIP formulation

$$
\begin{array}{rlrl}
Z(x, y)=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}+\sum_{i=1}^{m} f_{i} y_{i} & \rightarrow \min \\
\sum_{j=1}^{n} x_{i j} & \leq s_{i} y_{i} & & \forall i \in\{1, \ldots, m\} \\
x_{i j} & \leq d_{j} y_{i} & & \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\} \\
\sum_{i=1}^{m} x_{i j} & =d_{j} & \forall j \in\{1, \ldots, n\} \\
y_{i} & \in\{0,1\} & & \forall i \in\{1, \ldots, m\} \\
x_{i j} & \geq 0 & & \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}
\end{array}
$$

The objective function (10) minimizes total transportation and site costs.
Constraints (11) ensure that a customer can only be served by a warehouse that is built; the total amount may not exceed the capacity.

Location problems and the design of transportation networks

The capacitated warehouse location problem

CWLP: MIP formulation

$$
\begin{align*}
& Z(x, y)=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}+\sum_{i=1}^{m} f_{i} y_{i} \quad \rightarrow \quad \min \\
& \sum_{j=1}^{n} x_{i j} \leq s_{i} y_{i} \forall i \in\{1, \ldots, m\} \tag{11}\\
& x_{i j} \leq d_{j} y_{i} \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\} \tag{12}\\
& \sum_{i=1}^{m} x_{i j}=d_{j} \forall j \in\{1, \ldots, n\} \\
& y_{i} \in\{0,1\} \forall i \in\{1, \ldots, m\} \tag{13}\\
& x_{i j} \geq 0 \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}
\end{align*}
$$

The objective function (10) minimizes total transportation and site costs.
Constraints (11) ensure that a customer can only be served by a warehouse that is built; the total amount may not exceed the capacity. Constraints (12) ensure that the quantity transported from i to j may not exceed the demand.

Location problems and the design of transportation networks

The capacitated warehouse location problem

CWLP: MIP formulation

$$
\begin{align*}
& Z(x, y)=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}+\sum_{i=1}^{m} f_{i} y_{i} \quad \rightarrow \quad \min \\
& \sum_{j=1}^{n} x_{i j} \leq s_{i} y_{i} \forall i \in\{1, \ldots, m\} \tag{11}\\
& x_{i j} \leq d_{j} y_{i} \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\} \tag{12}\\
& \sum_{i=1}^{m} x_{i j}=d_{j} \forall j \in\{1, \ldots, n\} \\
& y_{i} \in\{0,1\} \forall i \in\{1, \ldots, m\} \tag{13}\\
& x_{i j} \geq 0 \forall i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}
\end{align*}
$$

The objective function (10) minimizes total transportation and site costs.
Constraints (11) ensure that a customer can only be served by a warehouse that is built; the total amount may not exceed the capacity. Constraints (12) ensure that the quantity transported from i to j may not exceed the demand. Constraints (13) ensure
© R.F that the Entine demand of customer j is delivered.

CWLP: ADD and DROP

Solution process:

- In general identical to uncapacitated problems
- When evaluating the solutions a small transportation problem has to be solved \rightarrow in every iteration step a sequence of different transportation problems has to be solved.
- A dummy-customer/warehouse is introduced to balance excess capacity or missing capacities (e.g. at the beginning of the ADD-algorithm - its transportation costs are set to a big constant M).

CWLP: DROP for capacitated problems - Example

We have 4 possible locations with the capacities $20,20,10$ and 10 and 4 customers with the demand $8,9,10,11$.
We introduce a dummy customer 5 with demand 22 .
To work with smaller numbers, we reduce the costs by subtracting the row and column minimum.

i, j	1	2	3	4	5	s_{i}	f_{i}
1	8	3	5	4	0	20	10
2	1	2	3	4	0	20	10
3	6	5	7	3	0	10	7
4	8	4	7	5	0	10	7
d_{j}	8	9	10	11	22	60	

CWLP: DROP for capacitated problems - Example

We have 4 possible locations with the capacities $20,20,10$ and 10 and 4 customers with the demand $8,9,10,11$.
We introduce a dummy customer 5 with demand 22.
To work with smaller numbers, we reduce the costs by subtracting the row and column minimum.

i, j	1	2	3	4	5	s_{i}	f_{i}
1	87	31	5 2	41	0	20	10
2	10	20	30	41	0	20	10
3	65	53	74	30	0	10	7
4	87	42	74	5 2	0	10	7
d_{j}	8	9	10	11	22	60	

© R.F Reduction constant $=8 * 1+9 * 2+10 * 3+11 * 3=89$

The capacitated warehouse location problem

CWLP: DROP for capacitated problems - Example

Initialization all locations are realized
$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}=97, \sum_{i=1}^{m} f_{i}=34, \mathrm{Z}=131$

i, j	1	2	3	4	5	s_{i}	f_{i}
1	7	1_{7}	2	${ }_{1} 1$	${ }_{12}$	20	10
2	${ }_{8}$	02	${ }_{10} 10$	1	0	20	10
3	5	3	4	${ }_{10} 10$	0	10	7
4	7	2	4	2	0	10	7
d_{j}	8	9	10	11	22	60	

CWLP: DROP for capacitated problems - Example

Iteration step forbid one of the four locations in turn and solve a TP for each configuration

CWLP: DROP for capacitated problems - Example

Iteration step forbid one of the four locations in turn and solve a TP for each configuration
Forbid location 1? Z = 129 (improvement)

i, j	1	2	3	4	5	s_{i}	f_{i}
2	0_{8}	0_{2}	1_{10}	1	0	20	10
3	5	3	4	${ }^{0} 10$	0	10	7
4	7	${ }^{2} 7$	4	${ }^{2} 1$	0_{2}	10	7
d_{j}	8	9	10	11	2	60	

CWLP: DROP for capacitated problems - Example

Iteration step forbid one of the four locations in turn and solve a TP for each configuration
Forbid location 2? Z = 199 (deterioration)

i, j	1	2	3	4	5	s_{i}	f_{i}			
1	7	1_{9}	1_{10}	${ }^{1} 1$	0	20	10			
3	5	3	4	${ }^{0} 10$	0	10	7			
4	7_{8}	2	4	2	0_{2}	10	7			
d_{j}	8	9	10	11	2	60				

CWLP: DROP for capacitated problems - Example

Iteration step forbid one of the four locations in turn and solve a TP for each configuration
Forbid location 3? Z = 134 (deterioration)

i, j	1	2	3	4	5	s_{i}	f_{i}
1	7	1_{7}	2	${ }_{1}^{1} 1$	${ }^{0} 2$	20	10
2	0_{8}	0_{2}	1_{10}	1	0	20	10
4	7	2	4	2	${ }^{0} 10$	10	7
d_{j}	8	9	10	11	12	60	

CWLP: DROP for capacitated problems - Example

Iteration step forbid one of the four locations in turn and solve a TP for each configuration
Forbid location 4? Z = 124 (improvement)

i, j	1	2	3	4	5	s_{i}	f_{i}
1	7	1_{7}	2	${ }_{1}^{1} 1$	${ }^{0} 2$	20	10
2	0_{8}	0_{2}	1_{10}	1	0	20	10
3	5	3	4	0	${ }^{0} 10$	10	7
d_{j}	8	9	10	11	12	60	

CWLP: DROP for capacitated problems - Example

Result from Iteration 2:

Warehouses at locations 2 and 3 are build
Location 4 is forbidden
$I_{0}=\{4\}, I_{1}=\{2,3\}, I_{1}^{p o t}=\{1\}$
Since location 1 cannot be forbidden, because of capacity reasons, the result of the DROP method is $I_{1}=\{1,2,3\}$ with $\mathrm{Z}=124$.

Linear assignment problem (LAP)

The LAP is the fundamental optimization problem for internal location planning. It is related to the transportation problem.

Input

m machines (activities, workers, drivers)
n potential locations (dates, projects, vehicles)
$c_{i j} \quad$ costs to build or run machine i at location j
Each driver has to be assigned to exactly one vehicle and to each vehicle at most one driver can be assigned. We want to minimize the total costs.

LAP - Example

3 drivers have to be assigned to 4 vehicles, the costs $c_{i j}$ are given in the following matrix:

		Vehicles j			
	i, j	1	2	3	4
Drivers i	1	13	10	12	11
	2	15	M	13	20
	3	5	7	10	6

Driver 2 is not able to drive vehicle 2. Therefore the assignment costs are set to M (a large constant).

LAP - Example

If the number of vehicles \neq the number of drivers we add dummy rows (drivers) or dummy columns (vehicles) with 0 cost.

		Vehicles j			
	i, j	1	2	3	4
Drivers i	1	13	10	12	11
	2	15	M	13	20
	3	5	7	10	6
Dummy	4	0	0	0	0

The vehicle the dummy driver is assigned to remains unused.

Location problems and the design of transportation networks The linear assignment problem

LAP - LP formulation

Decision variables

$x_{i j}=\left\{\begin{array}{l}1, \text { if driver } i \text { is assigned to vehicle } j, \\ 0, \text { otherwise } .\end{array}\right.$

Location problems and the design of transportation networks The linear assignment problem

LAP - LP formulation

Decision variables

$x_{i j}=\left\{\begin{array}{l}1, \text { if driver } i \text { is assigned to vehicle } j, \\ 0, \text { otherwise } .\end{array}\right.$

Formulation

$$
\begin{align*}
Z=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} & \rightarrow \min & & \tag{16}\\
\sum_{j=1}^{n} x_{i j} & =1 & & \forall i \in\{1, \ldots, n\} \tag{17}\\
\sum_{i=1}^{n} x_{i j} & =1 & & \forall j \in\{1, \ldots, n\} \tag{18}\\
x_{i j} & \in\{0,1\} & & \forall i \in\{1, \ldots, n\}, j \in\{1, \ldots, n\} \tag{19}
\end{align*}
$$

Location problems and the design of transportation networks The linear assignment problem

LAP - LP formulation

Decision variables

$x_{i j}=\left\{\begin{array}{l}1, \text { if driver } i \text { is assigned to vehicle } j, \\ 0, \text { otherwise. }\end{array}\right.$

Formulation

$$
\begin{align*}
Z=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} & \rightarrow \min & & \tag{16}\\
\sum_{j=1}^{n} x_{i j} & =1 & & \forall i \in\{1, \ldots, n\} \tag{17}\\
\sum_{i=1}^{n} x_{i j} & =1 & & \forall j \in\{1, \ldots, n\} \tag{18}\\
x_{i j} & \in\{0,1\} & & \forall i \in\{1, \ldots, n\}, j \in\{1, \ldots, n\} \tag{19}
\end{align*}
$$

We want to minimize the total assignment costs such that every driver is assigned to
© R.F. exactly ${ }_{\text {fart }}^{\text {one }}$. vehicle and each vehicle receives exactly one driver.

LAP - Formulation as TP

- Compare the LP formulation of the TP and LAP!

LAP - Formulation as TP

- Compare the LP formulation of the TP and LAP!
- A LAP can be seen as a special case of the TP: each driver can be seen as a supplier with a capacity of 1 and each vehicle can be seen as a customer with a demand of 1 .

LAP - Formulation as TP

- Compare the LP formulation of the TP and LAP!
- A LAP can be seen as a special case of the TP: each driver can be seen as a supplier with a capacity of 1 and each vehicle can be seen as a customer with a demand of 1 .
- In general, the TP would allow non-integer $x_{i j}$. However, optimal solutions to the TP have the property that exactly n variables take value 1 while all other variables take value 0 . Therefore, we obtain a feasible assignment.

LAP as TP - Example

i, j	1	2	3	4	s_{i}
1	13	10	12	11	1
2	15	M	13	20	1
3	5	7	10	6	1
4	0	0	0	0	1
d_{j}	1	1	1	1	

reduced cost matrix:

Subtract the smallest cost coefficient of each row/column from every cost coefficient of this row/column; the optimal solution remains the same but its cost change.

LAP as TP - Example

i, j	1	2	3	4	s_{i}
1	13	10	12	11	1
2	15	M	13	20	1
	-13				
3	5	7	10	6	1
4	0	0	0	0	1
d_{j}	1	1	1	1	

reduced cost matrix:

Subtract the smallest cost coefficient of each row/column from every cost coefficient of this row/column; the optimal solution remains the same but its cost change.

Transportation Logistics
Location problems and the design of transportation networks
The linear assignment problem

LAP as TP - Example

Reduced cost matrix

i, j	1	2	3	4	s_{i}
1	3	0	2	1	1
2	2	M	0	7	1
3	0	2	5	1	1
4	0	0	0	0	1
d_{j}	1	1	1	1	

LAP as TP - Example

Reduced cost matrix

i, j	1	2	3	4	s_{i}
1	3	0	2	1	1
2	2	M	0	7	1
3	0	2	5	1	1
4	0	0	0	0	1
d_{j}	1	1	1	1	

Column minima method gives the optimal solution
For the solution of larger problems, additional MODI-steps have to be performed, until the optimal solution is reached.

LAP: The Hungarian Method (Kuhn's algorithm)

- Step 1 generate a reduced matrix, i.e. a matrix that contains at least one zero in each row and in each column.
- Step 2 For the first assignment, choose a row having only one zero and box this zero; cross all other zeros of the column in which the boxed zero lies. Repeat this step for all rows containing a single zero. Then, repeat the same procedure for the columns.
- Step 3 If each zero of the reduced matrix is either boxed or crossed, and each row and column contains exactly one boxed zero. The optimal solution has been found. Otherwise proceed with step 4.
- Step 4 Draw a minimum number of horizontal and vertical lines such that all zeros are covered. (start with the row or column that contains the maximum number of zeros; ties can be broken arbitrarily)
- Step 5 Identify the smallest value in all uncovered cells. Subtract this value from all values in uncovered cells and add this value to all entries in cells where two lines intersect. Proceed with step 2.

LAP: The Hungarian Method (Kuhn's algorithm)

Step 4 Algorithm for finding the minimum number of horizontal and vertical lines:
(1) Mark all rows, which contain no boxed 0 .
(2) Mark all columns, which contain one crossed 0 on a marked row.
(3) Mark all rows, which contain a framed 0 on a marked column.
(4) Repeat 2 and 3 until no additional column or row can be marked.
(5) Mark with a line the non-marked rows and every marked column. All framed and crossed 0 should now be covered by at least one line.

The linear assignment problem

LAP: The Hungarian Method - Example

Step 1 generate a reduced matrix

i, j	1	2	3	4	5
1	5	5	7	4	8
2	6	5	8	3	7
3	6	8	9	5	10
4	7	6	6	3	6
5	6	7	10	6	11

LAP: The Hungarian Method - Example

Step 1 generate a reduced matrix

i, j	1	2	3	4	5
1	5	5	7	4	8
2	6	5	8	3	7
3	6	8	9	5	10
4	7	6	6	3	6
5	6	7	10	6	11

i, j	1	2	3	4	5
1	5	5	7	4	8
2	6	5	8	3	7
3	6	8	9	5	10
-3					
4	7	6	6	3	6
5	6	7	10	6	11

Source: Kasana and Kumar (2004) 'Introductory Operations Research'

LAP: The Hungarian Method - Example

Step 1 generate a reduced matrix

i, j	1	2	3	4	5
1	5	5	7	4	8
2	6	5	8	3	7
3	6	8	9	5	10
4	7	6	6	3	6
5	6	7	10	6	11

i, j	1	2	3	4	5
1	1	1	3	0	4
2	3	2	5	0	4
-4					
3	1	3	4	0	5
4	4	3	3	0	3
-5					
5	0	1	4	0	5

Source: Kasana and Kumar (2004) 'Introductory Operations Research'

LAP: The Hungarian Method - Example

Step 1 generate a reduced matrix

i, j	1	2	3	4	5
1	5	5	7	4	8
2	6	5	8	3	7
3	6	8	9	5	10
4	7	6	6	3	6
5	6	7	10	6	11

i, j	1	2	3	4	5
1	1	1	3	0	4
2	3	2	5	0	4
3	1	3	4	0	5
4	4	3	3	0	3
5	0	1	4	0	5
-1					-3

Source: Kasana and Kumar (2004) 'Introductory Operations Research'

LAP: The Hungarian Method - Example

Step 1 generate a reduced matrix

i, j	1	2	3	4	5
1	5	5	7	4	8
2	6	5	8	3	7
3	6	8	9	5	10
4	7	6	6	3	6
5	6	7	10	6	11

i, j	1	2	3	4	5
1	1	0	0	0	1
2	3	1	2	0	1
3	1	2	1	0	2
4	4	2	0	0	0
5	0	0	1	0	2
-1					-3

Source: Kasana and Kumar (2004) 'Introductory Operations Research'

LAP: The Hungarian Method - Example

Step 1 generate a reduced matrix

i, j	1	2	3	4	5
1	5	5	7	4	8
2	6	5	8	3	7
3	6	8	9	5	10
4	7	6	6	3	6
5	6	7	10	6	11

i, j	1	2	3	4	5
1	1	0	0	0	1
2	3	1	2	0	1
3	1	2	1	0	2
4	4	2	0	0	0
5	0	0	1	0	2
-1					-3

cost reduction constant $=4+3+5+3+6+1+3+3=28$

Source: Kasana and Kumar (2004) 'Introductory Operations Research'

The linear assignment problem

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	0	0	1
2	3	1	2	0	1
3	1	2	1	0	2
4	4	2	0	0	0
5	0	0	1	0	2

The linear assignment problem

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	0	0	1
2	3	1	2	0	1
3	1	2	1	0	2
4	4	2	0	0	0
5	0	0	1	0	2

The linear assignment problem

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	0	$\boxed{ }$	1
2	3	1	2	0	1
3	1	2	1	Ω	2
4	4	2	0	\boxed{y}	0
5	0	0	1	Ω	2

The linear assignment problem

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	0	Ω	1
2	3	1	2	0	1
3	1	2	1	Ω	2
4	4	2	0	Ω	0
5	0	0	1	Ω	2

The linear assignment problem

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	0	Ω	1
2	3	1	2	0	1
3	1	2	1	Ω	2
4	4	2	0	Ω	0
5	0	Ω	1	Ω	2

The linear assignment problem

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	0	\bigotimes	1
2	3	1	2	0	1
3	1	2	1	\bigotimes	2
4	4	2	0	\bigotimes	0
5	0	\bigotimes	1	\bigotimes	2

The linear assignment problem

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	\bigotimes	\bigotimes	1
2	3	1	2	0	1
3	1	2	1	\bigotimes	2
4	4	2	0	\bigotimes	0
5	0	\bigotimes	1	\bigotimes	2

The linear assignment problem

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	Q	0	1
2	3	1	2	0	1
3	1	2	1	0	2
4	4	2	0	Q	0
5	0	Q	1	α	2

The linear assignment problem

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	Q	Q	1
2	3	1	2	0	1
3	1	2	1	\square	2
4	4	2	0	a	\%
5	0	Q	1	Q	2

The linear assignment problem

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	Q	Q	1
2	3	1	2	0	1
3	1	2	1	Q	2
4	4	2	0	Q	Q
5	0	\%	1	Q	2

Step 3 Every zero is either boxed or crossed but each row and column does not contain exactly one boxed zero \rightarrow optimality not reached yet.

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	Q	\%	1
2	3	1	2	0	1
3	1	2	1	Q	2
4	4	2	0	Q	®
5	0	\cdots	1	\cdots	2

Step 4 draw horizontal and vertical lines

Step 3 Every zero is either boxed or crossed but each row and column does not contain exactly one boxed zero \rightarrow optimality not reached yet.

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	Q	Q	1
2	3	1	2	0	1
3	1	2	1	Q	2
4	4	2	0	Q	Q
5	0	-	1	0	2

Step 3 Every zero is either boxed or crossed but each row and column does not contain exactly one boxed zero \rightarrow optimality not reached yet.

Step 4 draw horizontal and vertical lines

i, j	1	2	3	4	5
1	1	0	0	0	1
2	3	1	2	0	1
3	1	2	1	0	2
	4	4	2	0	0
5	0	0	1	0	2

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	Q	Q	1
2	3	1	2	0	1
3	1	2	1	Q	2
4	4	2	0	Q	\%
5	0	Q	1	Q	2

Step 3 Every zero is either boxed or crossed but each row and column does not contain exactly one boxed zero \rightarrow optimality not reached yet.

Step 4 draw horizontal and vertical lines

i, j	1	2	3	4	5
1	1	0	0	0	1
2	3	1	2	0	1
	1	2	1	0	2
4	4	2	0	0	0
5	0	0	1	0	2

Step 5 identify the smallest value of all uncovered cells: 1 . Subtract this value from all uncovered cells and add it to cells at intersections of two lines.

LAP: The Hungarian Method - Example

Step 5 cont. Substract 1 from all uncovered cells and add it to cells at intersections of two lines.

The linear assignment problem

LAP: The Hungarian Method - Example

Step 5 cont. Substract 1 from all uncovered cells and add it to cells at intersections of two lines.

i, j	1	2	3	4	5
1	1	0	0	1	1
2	2	0	1	0	0
	0	0	1	0	0
	4	1			
4	4	2	0	1	0
5	0	0	1	1	2

LAP: The Hungarian Method - Example

Step 5 cont. Substract 1 from all uncovered cells and add it to cells at intersections of two lines.

i, j	1	2	3	4	5
1	1	0	0	1	1
2	2	0	1	0	0
3	0	1	0	0	1
	4	2	0	1	0
5	0	0	1	1	2

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	0	1	1
2	2	0	1	0	0
3	0	1	0	0	1
4	4	2	0	1	0
5	0	0	1	1	2

The linear assignment problem

LAP: The Hungarian Method - Example

Step 5 cont. Substract 1 from all uncovered cells and add it to cells at intersections of two lines.

i, j	1	2	3	4	5
1	1	0	0	1	1
2	2	0	1	0	0
3	0	1	0	0	1
	4	2	0	1	0
5	0	0	1	1	2

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	0	1	1
2	2	0	1	0	0
3	0	1	0	0	1
4	4	2	0	1	0
5	0	0	1	1	2

The linear assignment problem

LAP: The Hungarian Method - Example

Step 5 cont. Substract 1 from all uncovered cells and add it to cells at intersections of two lines.

i, j	1	2	3	4	5
1	1	0	0	1	1
2	2	0	1	0	0
3	0	1	0	0	1
	4	2	0	1	0
5	0	0	1	1	2

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	Ω	1	1
2	2	Ω	1	0	0
3	0	1	0	0	1
4	4	2	0	1	0
5	0	\bigotimes	1	1	2

LAP: The Hungarian Method - Example

Step 2 box and cross zeros
Step 5 cont. Substract 1 from all uncovered cells and add it to cells at intersections of two lines.

i, j	1	2	3	4	5
1	1	0	0	1	1
2	2	0	1	0	0
	0	0	1	0	0
	1	1			
4	4	2	0	1	0
5	0	0	1	1	2

i, j	1	2	3	4	5
1	1	0	\bigotimes	1	1
2	2	\bigotimes	1	0	0
3	0	1	0	0	1
4	4	2	0	1	0
5	0	\bigotimes	1	1	2

\rightarrow There is no row or column with a single 0 . We will choose a row or column with 2 zeros. We decide to box cell $(1,2)$.
\rightarrow Now there a row with a single 0 .

LAP: The Hungarian Method - Example

Step 2 box and cross zeros
Step 5 cont. Substract 1 from all uncovered cells and add it to cells at intersections of two lines.

i, j	1	2	3	4	5
1	1	0	0	1	1
2	2	0	1	0	0
	0	0	1	0	0
	1	1			
4	4	2	0	1	0
5	0	0	1	1	2

i, j	1	2	3	4	5
1	1	0	-	1	1
2	2	\%	1	0	0
3	Q	1	0	0	1
4	4	2	0	1	0
5	0	\checkmark	1	1	2

\rightarrow There is no row or column with a single 0 . We will choose a row or column with 2 zeros. We decide to box cell $(1,2)$.
\rightarrow Now there a row with a single 0 .

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	Ω	1	1
2	2	Ω	1	0	0
3	Ω	1	0	0	1
4	4	2	0	1	0
5	0	Ω	1	1	2

\rightarrow There is no row or column with a single 0 . We will choose a row or column with 2 zeros. We decide to box cell $(1,2)$.
\rightarrow Now there a row with a single 0 .
\rightarrow There is again no row or column with a single 0 . We choose a row with two zeros. We decide to box cell $(2,4)$.

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	Ω	1	1
2	2	Ω	1	0	Ω
3	Ω	1	0	Ω	1
4	4	2	0	1	0
5	0	Ω	1	1	2

\rightarrow There is no row or column with a single 0 . We will choose a row or column with 2 zeros. We decide to box cell $(1,2)$.
\rightarrow Now there a row with a single 0 .
\rightarrow There is again no row or column with a single 0 . We choose a row with two zeros. We decide to box cell $(2,4)$.

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	Ω	1	1
2	2	Ω	1	0	Ω
3	\boxed{y}	1	0	Ω	1
4	4	2	0	1	0
5	0	Ω	1	1	2

\rightarrow There is no row or column with a single 0 . We will choose a row or column with 2 zeros. We decide to box cell $(1,2)$.
\rightarrow Now there a row with a single 0 .
\rightarrow There is again no row or column with a single 0 . We choose a row with two zeros. We decide to box cell $(2,4)$.
\rightarrow There is a single zero in column 5 .

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	*	1	1
2	2	Q	1	0	\%
3	Q	1	0	Q	1
4	4	2	\%	1	0
5	0	Q	1	1	2

\rightarrow There is no row or column with a single 0 . We will choose a row or column with 2 zeros. We decide to box cell $(1,2)$.
\rightarrow Now there a row with a single 0 .
\rightarrow There is again no row or column with a single 0 . We choose a row with two zeros. We decide to box cell $(2,4)$.
\rightarrow There is a single zero in column 5 .

LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i, j	1	2	3	4	5
1	1	0	Ω	1	1
2	2	Ω	1	0	Ω
3	Ω	1	0	Ω	1
4	4	2	Ω	1	0
5	0	Ω	1	1	2

\rightarrow There is no row or column with a single 0 . We will choose a row or column with 2 zeros. We decide to box cell $(1,2)$.
\rightarrow Now there a row with a single 0 .
\rightarrow There is again no row or column with
a single 0 . We choose a row with two zeros. We decide to box cell $(2,4)$.
\rightarrow There is a single zero in column 5 .

LAP: The Hungarian Method - Example

i, j	1	2	3	4	5
1	1	0	-	1	1
2	2	\%	1	0	Q
3	Q	1	0	Q	1
4	4	2	Q	1	0
5	0	\%	1	1	2

Optimality reached. This problem has alternative optimal solutions.
Total costs $Z=28+1=29$
Assignments: driver 1 on vehicle 2, driver 2 on vehicle 4, driver 3 on vehicle 3, driver 4 on vehicle 5 , driver 5 on vehicle 1 .

Location problems and the design of transportation networks
The linear assignment problem

References

F. Hillier, G. Lieberman (1995) Introduction to Operations

Research, McGraw-Hill. (In German published by Oldenbourg)
H.S. Kasana, K.D. Kumar (2004) Introductory Operations Research, Springer.

