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Location problems

Production sites PS1 PS2 PS3 PS4

Full truck load transportation

Central warehouses CW1 CW2 CW3 CW4

Full-truckload/tours

Distributing warehouses DW1 DW2 DW3 DW4

Less-than-truckload tours

Customers C1 C2 C3 C4

How many warehouses shall be built?
Which warehouses shall be built?
How should the transportation network be designed?

c© R.F. Hartl, S.N. Parragh 2 / 68



Transportation Logistics

Location problems and the design of transportation networks

Location problems

Median problems

bi...weight of node i

dij ...distance between nodes i and j

Undirected graph

Median: the node with the shortest weighted distance to all other
nodes
mini∈V σ(i) and σ(i) =

∑

j∈V dijbj .

Directed graph

Out-median: the node with the shortest weighted distance to all
other nodes. mini∈V σout(i) and σout(i) =

∑

j∈V dijbj.
In-median: the node with the shortest weighted distance from all
other nodes. mini∈V σin(i) and σin(i) =

∑

j∈V djibj.
Median node i for which σout(i) + σin(i) is minimal.
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Location problems

Median problems - Example

A/4

B/0

C/2

D/3

E/1

F/2

2

2

3

3

4

2

5

2

4

3

D/3

E/1

0 12 2 10 6 12 4
2 0 3 3 7 5 0
12 10 0 8 4 10 2

D = 4 2 5 0 5 2 b = 3
8 6 9 4 0 6 1
11 9 12 7 3 0 2

Which node is the out-median?
i = D, σout(D) = 35

Which node is the in-median?
i = E, σin(E) = 53

Source: Domschke, Drexl (1990) Logistik: Standorte, Chapter 3.1.1.
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Location problems

Uncapacitated warehouse location problems (WLP)

We will first consider its simplest version, that is, the single
stage/single level problem:

Warehouses (m) W1 W3 W4

Full truck load transportation

Customers (n) C1 C2 C3 C4

There are n customers, each with a given demand. The company aims at reducing
their distribution costs. In order to achieve this goal, it plans to setup and operate
distributing warehouses.
There are m potential locations available. If a warehouse is built at site i fixed of fi
EUR occur. The transportation costs for transporting the entire demand of customer
j from warehouse i are given by cij EUR.
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Location problems

Uncapacitated warehouse location problems (WLP)

We want to minimize the total transportation and holding costs
under the condition that the demands of all customers are
satisfied.

How many warehouses shall be built?

At which locations shall they be built?

Note that ...

... in the uncapacitated case it is never necessary to supply a
customer from more than one warehouse.
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Location problems

WLP: Two possible solutions

Solution 1: build all warehouses

i,j 1 2 3 4 5 6 7 fi

1 1 2 10 9 6 7 3 5
2 2 9 0 7 3 6 10 7
3 7 6 1 5 3 10 5 5
4 6 5 10 2 6 3 6 6
5 6 4 6 3 7 2 6 5

fixed costs = 5+7+5+6+5=28
transportation costs =
1+2+0+2+3+2+3=13
total costs = 28+13=41

Solution 2: build only two: warehouse
1 and 3

i,j 1 2 3 4 5 6 7 fi

1 1 2 10 9 6 7 3 5
3 7 6 1 5 3 10 5 5

fixed costs = 5+5=10
transportation costs =
1+2+1+5+3+7+3=22
total costs = 10+22=32

Source: Domschke, Drexl (1990) Logistik: Standorte, Chapter 3.3.1
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Location problems

WLP: MIP formulation

in the case where the locations/warehouses are already
selected:

the total costs can be calculated immediately
BUT: 2m− 1 selection possibilities (for m = 10 → 1023
possible solutions; m...number of potential warehouse
locations)

Formulation in terms of a Mixed Integer Program (MIP)

yi =

{

1, if at location i a warehouse is built,

0, otherwise.

xij = share of customer j’s demand that is covered by warehouse i

yi...binary, xij...continuous, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

How many decision variables do we have?
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Location problems

WLP: MIP formulation

Z(x, y) =

m∑

i=1

n∑

j=1

cijxij +

m∑

i=1

fiyi → min (1)

xij ≤ yi ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} (2)
m∑

i=1

xij = 1 ∀j ∈ {1, . . . , n} (3)

yi ∈ {0, 1} ∀i ∈ {1, . . . ,m} (4)

xij ≥ 0 ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} (5)

The objective function (1) minimizes total transportation and site costs.
Constraints (2) ensure that a customer can only be served by a warehouse that
is built.

Constraints (3) ensure that the entire demand of customer j is delivered.

c© R.F. Hartl, S.N. Parragh 9 / 68



Transportation Logistics

Location problems and the design of transportation networks

Location problems

WLP: MIP formulation

Difficulty

m*n continuous variables and m binary variables → for larger
instances, the computation of optimal solutions becomes time
consuming.
Solution: employ heuristics

Classification of heuristics

Construction heuristics (to obtain a feasible initial solution)

Improvement heuristics (to improve on a given initial solution)
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Location problems

WLP: construction heuristic ADD

Notation

I = {1, . . . ,m} set of all potential warehouse locations.
I0 set of definitely forbidden locations.

I
pot
0 set of potentially forbidden locations.
I1 set of definitely realized locations.
ωi savings in transportation costs if location i

is realized in addition to the already selected.
Z total costs (objective value).
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Location problems

WLP: construction heuristic ADD

Initialization

determine which location should be realized if exactly one
warehouse is built: for each warehouse location i calculate
ci =

∑m

j cij ; select location k with the smallest cost value
ck + fk
set I1 = {k}, Ipot

0
= I \ {k} and Z = ck + fk

calculate the savings in transportation costs
ωij = max{ckj − cij , 0} for each i in I

pot
0

and all customers j,
and the row sum ωi =

∑n

j=1
ωij
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WLP: ADD - Initialization

cij 1 2 3 4 5 6 7 fi ci fi + ci

1 1 2 10 9 6 7 3 5 38 43

2 2 9 0 7 3 6 10 7 37 44

3 7 6 1 5 3 10 5 5 37 42

4 6 5 10 2 6 3 6 6 38 44

5 6 4 6 3 7 2 6 5 34 39

first location k = 5 with Z := c5 + f5 = 39 , I1 = {5},
I
pot
0 = {1, 2, 3, 4}

ωij 1 2 3 4 5 6 7 ωi fi diff

1 5 2 1 3 11 5 6

2 4 6 4 14 7 7

3 5 4 1 10 5 5

4 1 1 2 6 -4
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Location problems

WLP: construction heuristic ADD

Iteration step

in each iteration exactly one potential location k ∈ I
pot
0

becomes part of the set I1; it is the one with the largest value
for ωk − fk
set I1 = I1 ∪ {k}, Ipot

0
= I

pot
0

\ {k} and Z = Z − ωk + fk
all locations i with a negative value for ωi − fi (fixed costs are
greater than the savings in transportation costs) can be
definitely forbidden: for all i ∈ I

pot
0

with ωi ≤ fi →
I0 = I0 ∪ {i} and I

pot
0

= I0 \ {i}
for each i ∈ I

pot
0

compute ωij = max{ωij − ωkj , 0}

Termination criterion The procedure ends as soon as
I
pot
0 = {}.

Result Build a warehouse at all locations ∈ I1 and assign each
customer j to the warehouse h ∈ I1 for which h = argmin

i∈I1
{cij}
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WLP: ADD - Example cont.

ωij 1 2 3 4 5 6 7 ωi fi diff

1 5 2 1 3 11 5 6

2 4 6 4 14 7 7

3 5 4 1 10 5 5

4 1 1 2 6 -4

Iteration 1
build k = 2 and forbid i = 4 (ω4 < f4)
Z = 39 - 14 + 7 = 32
I
pot
0 = {1, 3}, I1 = {2, 5}, I0 = {4}
The new ωij matrix (ωij = max{ωij − ωkj, 0}):

ωij 1 2 3 4 5 6 7 ωi fi diff

1 1 2 3 6 5 1

3 1 1 5 -4
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Location problems

WLP: ADD - Example cont.

ωij 1 2 3 4 5 6 7 ωi fi diff

1 1 2 3 6 5 1

3 1 1 5 -4

Iteration 2
build k = 1 and forbid i = 3 (ω3 < f3)
Z = 32 - 6 + 5= 31
I
pot
0 = {}, I1 = {1, 2, 5}, I0 = {3, 4}
Result
Z = 31 and warehouses at locations 1,2, and 5 will be built
Customers 1,2,7 will be served by warehouse 1
Customers 3,5 by warehouse 2
Customers 4,6 by warehouse 5
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Location problems

WLP: Construction heuristic DROP

Notation

As before: I = {1, . . . ,m}, I0, I1, Z plus

I
pot
1 set of all potentially included locations

The DROP heuristic is the opposite approach to the ADD
method: we start from a solution where all locations are
realized.

Initialization

set Ipot
1

= I, I0 = I1 = {}, Z =
∑m

i=1
fi +

∑m

j=1
mini∈I

pot

1

cij

Iteration step

Forbid exactly one potential location from the set Ipot
1

(based
on total costs - select the location that causes the largest
decrease in the total costs)
Move all locations which would cause a cost increase if
forbidden from the set Ipot

1
to the set I1.
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Location problems

WLP: DROP - Example

Initialization I
pot
1 = {1, 2, 3, 4, 5}

For each column j = {1, . . . , n} identify the smallest cost element
ch1j and the second smallest cost element ch2j

cij 1 2 3 4 5 6 7 δi fi decr.

1 1 2 10 9 6 7 3 5 5 0

2 2 9 0 7 3 6 10 1 7 6

3 7 6 1 5 3 10 5 0 5 5

4 6 5 10 2 6 3 6 1 6 5

5 6 4 6 3 7 2 6 1 5 4

ch1j 1 2 0 2 3 2 3

ch2j 2 4 1 3 3 3 5

h1 1 1 2 4 2 5 1

h2 2 5 3 5 3 4 3
δi...sum of differences between ch2j − ch1j if i is h1 for j - transportation cost

increase if i is forbidden.
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Location problems

WLP: DROP - Example

Iteration 1
realize warehouse 1 (I1 = {1}, Ipot1 = I

pot
1 \ {1}) because δi = fi

forbid location 2 (I0 = {2}, Ipot1 = I
pot
1 \ {2}) because it leads to

the largest cost reduction fi − δi.

Iteration 2
I
pot
1 = {3, 4, 5}, I1 = {1}, I0 = {2}
i 1 2 3 4 5 6 7 δi fi decr.

1 1 2 10 9 6 7 3 - - -

3 7 6 1 5 3 10 5 8 5 -3

4 6 5 10 2 6 3 6 1 6 5

5 6 4 6 3 7 2 6 1 5 4

ch1j 1 2 1 2 3 2 3

ch2j 6 4 6 3 6 3 5

h1 1 1 3 4 3 5 1

h2 4 5 5 5 1 4 3
warehouse 3 is realized, location 4 is forbidden.

c© R.F. Hartl, S.N. Parragh 19 / 68



Transportation Logistics

Location problems and the design of transportation networks

Location problems

WLP: DROP - Example

Iteration 3
I
pot
1 = {5}, I1 = {1, 3}, I0 = {2, 4}
i 1 2 3 4 5 6 7 δi fi decr.

1 1 2 10 9 6 7 3 - - -

3 7 6 1 5 3 10 5 - - -

5 6 4 6 3 7 2 6 7 5 -2

ch1j 1 2 1 3 3 2 3

ch2j 6 4 6 5 6 7 5

h1 1 1 3 5 3 5 1

h2 5 5 5 5 1 1 3

Warehouse 5 will be built (forbidding it would lead to an increase in total cost

of 2)
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Location problems

WLP: DROP - Example

Result

i 1 2 3 4 5 6 7 fi

1 1 2 10 9 6 7 3 5

3 7 6 1 5 3 10 5 5

5 6 4 6 3 7 2 6 5

Locations I1 = {1, 3, 5} are built.
Customers 1,2,7 are supplied by warehouse 1
Customers 3,5 by warehouse 3
Customers 4,6 by warehouse 5

Z = 30 (slightly better result than from ADD algorithm)
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Location problems

WLP: improvement methods

exchange one location from set I1 with one from the set I0
swap those two that lead to the largest cost savings (best
improvement)
swap the first two that lead to a cost decrease (first
improvement)

combine ADD and DROP

use the DROP-rules to forbid the location that leads to the
largest cost reduction (or the smallest cost increase) then add
customer locations using the ADD-algorithm until no
additional cost reduction is possible.
use the ADD-algorithm to add the location that leads to the
largest cost reduction (or with the smallest cost increase) and
then use the DROP-algorithm to remove locations until no
additional cost reduction is possible.
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The design of transportation networks

The design of transportation networks: the
transportation problem (TP)

capacity restrictions at the production sites
The per unit transportation cost matrix:

Customer

production site V1 V2 V3 V4 capacity

F1 10 5 6 11 25

F2 1 2 7 4 25

F3 9 1 4 8 50

demand 15 20 30 35
∑

100

total capacity = total demand!
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The design of transportation networks

TP: Model formulation

m number of productions sites, i ∈ {1, . . . ,m}
si supply of production site i

n number of customers, j ∈ {1, . . . , n}
di demand of customer i
cij per unit transportation cost from i to j

xij decision variable: amount of demand of i supplied by j

Z =
m∑

i=1

n∑

j=1

cijxij → min (6)

n∑

j=1

xij = si ∀i ∈ {1, . . . ,m} (ui) (7)

m∑

i=1

xij = dj ∀j ∈ {1, . . . , n} (vj) (8)

xij ≥ 0 i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} (9)

supply should equal demand:
∑m

i=1
si =

∑n
j=1
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The design of transportation networks

TP: solution methods

Solution methods

heuristic

Vogel’s approximation method
Northwest corner rule
Column minima method

exact

find a basic solution heuristically
apply transportation simplex method
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The design of transportation networks

TP: Vogel’s approximation

1 for each row and column remaining under consideration,
calculate its difference (= the arithmetic difference between
and smallest and next-to-the-smallest unit costs cij still
remaining in that row or column; if two tie, then the
difference is 0)

2 in the row or column having the largest difference select the
variable with the smallest remaining unit cost. (ties may be
broken arbitrarily) Transport as much as possible between the
production site and the customer of the selected variable.

3 if a resource of either row or column is fully used, eliminate
the according row or column.

4 if there remains only one row or column, fill all still remaining
cells of this row or column with the required amounts.
Otherwise proceed with step 1.
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The design of transportation networks

TP: Vogel’s approximation - Example

i,j 1 2 3 4 supply

1
10 5 6 11

25

2
1 2 7 4

25

3
9 1 4 8

50

demand 15 20 30 35 100

8 1 2 4

—35 25

/1 4 /4 3

—30 5

1

1

3

/1 2—25 10

/1 5

/3 4—50 30

15 10

20

25

5 25

Total costs = 15*1+20*1+25*6+5*4+10*4+25*8 = 445
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The design of transportation networks

TP: Northwest corner rule

usually used to generate a starting solution for the transportation
simplex method; the occupied cells correspond to a basic solution

The table is filled from the north-west corner.

in each iteration, one cell is filled: the maximum possible
value is entered, such that the complete resource of either the
row or the column is consumed.

in the case where the complete column resource is consumed,
we move to the right

in the case where the complete row resource is consumed, we
move down

Result since supply = demand there always exists a feasible solution; exactly
m+ n− 1 occupied cells (= basic variables) xij are identified; the remaining
m ∗ n− (m+ n− 1) variables take value 0; they are non basic variables (NBV)

for explanation see Hillier and Lieberman (1995) ’Introduction to Operations Research’ page 318.
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The design of transportation networks

TP: Northwest corner rule - Example 1

i,j 1 2 3 4 si

1 25

2 25

3 50

dj 15 20 30 35 100

15 10

10 15

15 35
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The design of transportation networks

TP: Northwest corner rule - Example 2

sometimes it is necessary to move
more than once to the right or
down:
i,j 1 2 3 4 si

1 30

2 20

3 35

dj 15 10 35 25 85

15 10 5

20

25 35

degeneracy

i,j 1 2 3 4 si

1 15

2 15

3 50

dj 10 20 30 20 80

10 5

15 0

30 20

column or row could be deleted →
we are only allowed to delete one
(arbitrary selection)

Advantage: very simple and fast
Disadvantage: it neglects the cost factors → bad starting
solutions
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The design of transportation networks

TP: Column minima method

in each iteration, in the most left (not yet deleted) column
select the smallest not yet deleted cij value and determine the
maximum possible value for xij

in the case where the column resource is consumed → delete
column j

in the case where the row resource is consumed → delete row i

it is a greedy method
usually better results than the northwest corner rule
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The design of transportation networks

TP: Column minima method - Example

i,j 1 2 3 4 si

1
10 5 6 11

25

2
1 2 7 4

25

3
9 1 4 8

50

dj 15 20 30 35 100

15

20 30 0

10

25
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The design of transportation networks

TP: Exact method - MODI, stepping stone
The transportation simplex method

i,j 1 2 ... n si ui

1
c11 c12

...
c1n

s1 u1

2
c21 c22

...
c2n

s2 u2

... ... ... ... ... ... ...

m
cm1 cm2

...
cmn

sm um

dj d1 d2 ... dn
vj v1 v2 ... vn

Initialization
generate a basic
feasible (BF)
starting tableau
with a starting
heuristic
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The design of transportation networks

TP: The transportation simplex method

Iteration step
1 for the current BF solution calculate the values of the dual

variables ui and vj using the following rule [MODI]:
cij = ui + vj whenever xij is an occupied cell (BV)
Their values are not unique.
Rule: set the dual variable to zero that corresponds to the row
or column containing the most occupied cells.

2 For all not occupied cells (NBV), compute cij − ui − vj .
3 Identify the entering basic variable: it is the NBV with the

most negative coefficient.
4 Increase the entering basic variable and perform the chain

reaction: change the other occupied cells. The BV that is the
first to receive the value 0 is deleted [stepping stone].

Termination criterion In case the coefficients of all NBV are
non-negative, the optimal solution has been reached.
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The design of transportation networks

TP: The transportation simplex method
(MODI/stepping stone) - Example

Initial solution: northwest corner rule

i,j 1 2 3 4 si ui

1
10 5 6 11

25

2
1 2 7 4

25

3
9 1 4 8

50

dj 15 20 30 35

vj

15 10

10 15

15 35

0

10 5

-3

10

-6

14

-4 -3

-6 -7

5 2

Iteration 1 compute
the values of the dual
variables ui and vj
compute the
coefficients
(cij − ui − vj) of the
NBV (empty cells)
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The design of transportation networks

TP: The transportation simplex method
(MODI/stepping stone) - Example

Iteration 1 (cont.)
The total costs of the initial solution are Z = 10*15 + 5*10 +
2*10 + 7*15 + 4*15 + 8*35 = 665.

In order to check the correctness of our values, in each iteration
the primal and the dual objective function values can be compared.
They should be equal:

Z =
m
∑

i=1

n
∑

j=1

cijxij =
m
∑

i=1

uisi +
n
∑

j=1

vjdj

The total costs of the dual solution are given by 25*0 + 25*(-3) +
50*(-6) + 15*10 + 20*5 + 30*10 + 35*14 = 665

The NBV with the most negative coefficient is variable x24. It will
become the new basic variable.
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The design of transportation networks

TP: The transportation simplex method
(MODI/stepping stone) - Example

Iteration 1 (cont.)

i,j 1 2 3 4 si ui

1
10 5 6 11

25

2
1 2 7 4

25

3
9 1 4 8

50

dj 15 20 30 35

vj

15 10

10 15

15 35

0

10 5

-3

10

-6

14

-4 -3

-6 -7

5 2

-7

+ǫ15−ǫ

15+ǫ 35−ǫ

because of x23 we set
ǫ = 15
Thus, x23 will become
a NBV, x24 = 15,
x33 = 30 and x34 = 20

Z = 665 + ǫ*(-7) =
665 - 7*15 = 560
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The design of transportation networks

TP: The transportation simplex method
(MODI/stepping stone) - Example

Iteration 2

i,j 1 2 3 4 si ui

1
10 5 6 11

25

2
1 2 7 4

25

3
9 1 4 8

50

dj 15 20 30 35

vj

15 10

10 15

30 20

0

10 5

-3

7

1

3

3 4

-6 7

-2 -5

-6

+ǫ 10−ǫ

15−ǫ 10+ǫ x21 is the entering BV;
because of x22 we set
ǫ = 10;
thus, x22 will become a
NBV, x21 = 10,
x11 = 5 and x12 = 20

Z = 560 + ǫ*(-6) =
560 - 6*10 = 500
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The design of transportation networks

TP: The transportation simplex method
(MODI/stepping stone) - Example

Iteration 3

i,j 1 2 3 4 si ui

1
10 5 6 11

25

2
1 2 7 4

25

3
9 1 4 8

50

dj 15 20 30 35

vj

5 20

10 15

30 20

0

10 5

-9

13

-5

9

-3 -2

6 7

4 1

-3

+ǫ

30−ǫ 20+ǫ

15−ǫ10+ǫ

5−ǫ
x13 is the entering BV;
because of x11 we set
ǫ = 5;
thus, x11 will become a
NBV, x21 = 15,
x23 = 10, x33 = 25,
x34 = 25

Z = 500 + ǫ*(-3) =
500 - 3*5 = 485
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TP: The transportation simplex method
(MODI/stepping stone) - Example

Iteration 4

i,j 1 2 3 4 si ui

1
10 5 6 11

25

2
1 2 7 4

25

3
9 1 4 8

50

dj 15 20 30 35

vj

20 5

15 10

25 25

0

5 6

-2

10

-6

7

3 1

3 7

4 -2-2

+ǫ

20−ǫ 5+ǫ

25−ǫ

x32 is the entering BV;
because of x12 we set
ǫ = 20;
thus, x12 will become a
NBV, x13 = 25 and
x33 = 5

Z = 485 + ǫ*(-2) =
485- 2*20 = 445
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TP: The transportation simplex method
(MODI/stepping stone) - Example

Iteration 5

i,j 1 2 3 4 si ui

1
10 5 6 11

25

2
1 2 7 4

25

3
9 1 4 8

50

dj 15 20 30 35

vj

25

15 10

20 5 25 0

1 4 8

2

-4

5

3 2 1

5 7

4

no negative coefficients
→ STOP optimal
solution found
Z = 445
basic variables:
x13 = 25
x21 = 15
x24 = 10
x32 = 20
x33 = 5
x34 = 25
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TP: Sensitivity analysis

The transportation problem is an LP with equality constraints (=).
Therefore, the dual variables are unrestricted in sign.

From duality theory we can derive the following. A data
change of the following form

si → si +∆ for an i and

dj → dj +∆ for a j

(i.e. small changes in the right hand side RHS) does not change
the values of the dual variables ui and vj (basis does not change,
solution remains optimal). In this case, the objective function
value is only changed by ∆(ui + vj):

Z → Z +∆(ui + vj)

Obviously, si and dj have to be changed simultaneously,
otherwise total demand and total supply are no longer equal.
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The design of transportation networks

TP: Sensitivity analysis - Example

i,j 1 2 3 4 si ui

1
1 4 2 5

22 + ∆ 0

2
6 1 5 6

24 2

3
7 5 3 5

16 1

dj 10 13 + ∆ 22 17

vj 1 -1 2 4

10 12

13 11

10 6

The solution given is the
optimal solution. (Z =
173)
What happens if the
data is changed as
follows:
s1 → s1 +∆
d2 → d2 +∆
The objective value of the
optimal solution changes
to Z = 173 + ∆(u1 + v2)
= 173 - ∆; this means
that the costs are
reduced, if the amount
transported is increased.
(This can happen in the
case of negative ui and
vj values; usually, the
costs are more likely to
increase.)
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The design of transportation networks

TP: Sensitivity analysis - Example

i,j 1 2 3 4 si ui

1
1 4 2 5

22 + ∆ 0

2
6 1 5 6

24 2

3
7 5 3 5

16 1

dj 10 13 + ∆ 22 17

vj 1 -1 2 4

10 12+∆

13+∆ 11-∆

10-∆ 6+∆

What’s the maximum
value ∆ may take such
that the current basis
remains optimal?

This value can be
identified in a similar way
as in the stepping stone
step (chain reaction).

x33 is the first variable to
become 0, if ∆ increases:
the upper bound is ≤ 10
x34 is the first variable to
become 0, if ∆ decreases:
the lower bound is ≥ −6

−6 ≤ ∆ ≤ 10

Check for correctness: Z =

1*10+2*(12+∆)+1*(13+∆)+6*(11-∆)+3*(10-∆)+5*(6+∆) = 173 - ∆
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The capacitated warehouse location problem (CWLP)

The single-level CWLP differs from the uncapacitated WLP only in
the assumption that

the capacity on the potential locations i = 1, . . . ,m is
bounded by s1, ..., sm units (per period)

the transportation costs cij are the costs per transported
unit

the demand of the customer is given with d1, ..., dn units

xij is the amount of goods transported from the warehouse at
location i to customer j
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The capacitated warehouse location problem

CWLP: MIP formulation

Z(x, y) =
m
∑

i=1

n
∑

j=1

cijxij +
m
∑

i=1

fiyi → min (10)

n
∑

j=1

xij ≤ siyi ∀i ∈ {1, . . . , m} (11)

xij ≤ djyi ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n} (12)

m
∑

i=1

xij = dj ∀j ∈ {1, . . . , n} (13)

yi ∈ {0, 1} ∀i ∈ {1, . . . , m} (14)

xij ≥ 0 ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n} (15)

The objective function (10) minimizes total transportation and site costs.
Constraints (11) ensure that a customer can only be served by a warehouse that is
built; the total amount may not exceed the capacity. Constraints (12) ensure that the
quantity transported from i to j may not exceed the demand. Constraints (13) ensure
that the entire demand of customer j is delivered.c© R.F. Hartl, S.N. Parragh 46 / 68
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CWLP: ADD and DROP

Solution process:

In general identical to uncapacitated problems

When evaluating the solutions a small transportation problem
has to be solved → in every iteration step a sequence of
different transportation problems has to be solved.

A dummy-customer/warehouse is introduced to balance
excess capacity or missing capacities (e.g. at the beginning of
the ADD-algorithm – its transportation costs are set to a big
constant M).
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CWLP: DROP for capacitated problems - Example

We have 4 possible locations with the capacities 20, 20, 10 and 10 and 4 customers
with the demand 8, 9, 10, 11.
We introduce a dummy customer 5 with demand 22.
To work with smaller numbers, we reduce the costs by subtracting the row and column
minimum.

i,j 1 2 3 4 5 si fi

1
8 3 5 4 0

20 10

2
1 2 3 4 0

20 10

3
6 5 7 3 0

10 7

4
8 4 7 5 0

10 7

dj 8 9 10 11 22 60

1
/8 7 /3 1 /5 2 /4 1 0

20 10

2
/1 0 /2 0 /3 0 /4 1 0

20 10

3
/6 5 /5 3 /7 4 /3 0 0

10 73

/8 7 /4 2 /7 4 /5 2 0
10 7

Reduction constant = 8*1+9*2+10*3+11*3 = 89c© R.F. Hartl, S.N. Parragh 48 / 68
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CWLP: DROP for capacitated problems - Example

Initialization all locations are realized
∑m

i=1

∑n
j=1 cijxij = 97,

∑m
i=1 fi = 34, Z = 131

i,j 1 2 3 4 5 si fi

1
7 1 2 1 0

20 10

2
0 0 0 1 0

20 10

3
5 3 4 0 0

10 7

4
7 2 4 2 0

10 7

dj 8 9 10 11 22 60

7 1 12

8 2 10

10

10
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CWLP: DROP for capacitated problems - Example

Iteration step forbid one of the four locations in turn and solve a
TP for each configuration
Forbid location 1? Z = 129 (improvement)

i,j 1 2 3 4 5 si fi

2
0 0 0 1 0

20 10

3
5 3 4 0 0

10 7

4
7 2 4 2 0

10 7

dj 8 9 10 11 2 60

8 2 10

10

7 1 2
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CWLP: DROP for capacitated problems - Example

Iteration step forbid one of the four locations in turn and solve a
TP for each configuration
Forbid location 2? Z = 199 (deterioration)

i,j 1 2 3 4 5 si fi

1
7 1 2 1 0

20 10

3
5 3 4 0 0

10 7

4
7 2 4 2 0

10 7

dj 8 9 10 11 2 60

9 10 1

10

8 2
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The capacitated warehouse location problem

CWLP: DROP for capacitated problems - Example

Iteration step forbid one of the four locations in turn and solve a
TP for each configuration
Forbid location 3? Z = 134 (deterioration)

i,j 1 2 3 4 5 si fi

1
7 1 2 1 0

20 10

2
0 0 0 1 0

20 10

4
7 2 4 2 0

10 7

dj 8 9 10 11 12 60

7 11 2

8 2 10

10
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CWLP: DROP for capacitated problems - Example

Iteration step forbid one of the four locations in turn and solve a
TP for each configuration
Forbid location 4? Z = 124 (improvement)

i,j 1 2 3 4 5 si fi

1
7 1 2 1 0

20 10

2
0 0 0 1 0

20 10

3
5 3 4 0 0

10 7

dj 8 9 10 11 12 60

7 11 2

8 2 10

10
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CWLP: DROP for capacitated problems - Example

Result from Iteration 2:

Warehouses at locations 2 and 3 are build

Location 4 is forbidden

I0 = {4}, I1 = {2, 3}, Ipot1 = {1}

Since location 1 cannot be forbidden, because of capacity reasons,
the result of the DROP method is I1 = {1, 2, 3} with Z = 124.
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Linear assignment problem (LAP)

The LAP is the fundamental optimization problem for internal
location planning. It is related to the transportation problem.

Input

m machines (activities, workers, drivers)
n potential locations (dates, projects, vehicles)
cij costs to build or run machine i at location j

Each driver has to be assigned to exactly one vehicle and to each
vehicle at most one driver can be assigned. We want to minimize
the total costs.
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LAP - Example

3 drivers have to be assigned to 4 vehicles, the costs cij are given
in the following matrix:

Vehicles j

i,j 1 2 3 4

Drivers i
1 13 10 12 11

2 15 M 13 20
3 5 7 10 6

Driver 2 is not able to drive vehicle 2. Therefore the assignment
costs are set to M (a large constant).
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LAP - Example

If the number of vehicles 6= the number of drivers we add dummy
rows (drivers) or dummy columns (vehicles) with 0 cost.

Vehicles j

i,j 1 2 3 4

Drivers i
1 13 10 12 11

2 15 M 13 20
3 5 7 10 6

Dummy 4 0 0 0 0

The vehicle the dummy driver is assigned to remains unused.
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LAP - LP formulation

Decision variables

xij =

{

1, if driver i is assigned to vehicle j,

0, otherwise.

Formulation

Z =
n
∑

i=1

n
∑

j=1

cijxij → min (16)

n
∑

j=1

xij = 1 ∀i ∈ {1, . . . , n} (17)

n
∑

i=1

xij = 1 ∀j ∈ {1, . . . , n} (18)

xij ∈ {0, 1} ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , n} (19)

We want to minimize the total assignment costs such that every driver is assigned to
exactly one vehicle and each vehicle receives exactly one driver.
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LAP - Formulation as TP

Compare the LP formulation of the TP and LAP!

A LAP can be seen as a special case of the TP: each driver
can be seen as a supplier with a capacity of 1 and each vehicle
can be seen as a customer with a demand of 1.

In general, the TP would allow non-integer xij. However,
optimal solutions to the TP have the property that exactly n

variables take value 1 while all other variables take value 0.
Therefore, we obtain a feasible assignment.
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LAP as TP - Example

i,j 1 2 3 4 si
1 13 10 12 11 1 -10
2 15 M 13 20 1 -13
3 5 7 10 6 1 -5
4 0 0 0 0 1
dj 1 1 1 1

reduced cost matrix:
Subtract the smallest cost coefficient of each row/column from
every cost coefficient of this row/column; the optimal solution
remains the same but its cost change.
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LAP as TP - Example

Reduced cost matrix

i,j 1 2 3 4 si
1 3 0 2 1 1
2 2 M 0 7 1
3 0 2 5 1 1
4 0 0 0 0 1
dj 1 1 1 1

Column minima method gives the optimal solution

For the solution of larger problems, additional MODI-steps have to
be performed, until the optimal solution is reached.
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LAP: The Hungarian Method (Kuhn’s algorithm)

Step 1 generate a reduced matrix, i.e. a matrix that contains at least
one zero in each row and in each column.

Step 2 For the first assignment, choose a row having only one zero and
box this zero; cross all other zeros of the column in which the boxed zero
lies. Repeat this step for all rows containing a single zero. Then, repeat
the same procedure for the columns.

Step 3 If each zero of the reduced matrix is either boxed or crossed, and
each row and column contains exactly one boxed zero. The optimal
solution has been found. Otherwise proceed with step 4.

Step 4 Draw a minimum number of horizontal and vertical lines such
that all zeros are covered. (start with the row or column that contains
the maximum number of zeros; ties can be broken arbitrarily)

Step 5 Identify the smallest value in all uncovered cells. Subtract this
value from all values in uncovered cells and add this value to all entries in
cells where two lines intersect. Proceed with step 2.

Source: Kasana and Kumar (2004) ’Introductory Operations Research’
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LAP: The Hungarian Method (Kuhn’s algorithm)

Step 4 Algorithm for finding the minimum number of horizontal
and vertical lines:

1 Mark all rows, which contain no boxed 0.

2 Mark all columns, which contain one crossed 0 on a marked
row.

3 Mark all rows, which contain a framed 0 on a marked column.

4 Repeat 2 and 3 until no additional column or row can be
marked.

5 Mark with a line the non-marked rows and every marked
column. All framed and crossed 0 should now be covered by
at least one line.
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LAP: The Hungarian Method - Example

Step 1 generate a reduced matrix

i,j 1 2 3 4 5
1 5 5 7 4 8
2 6 5 8 3 7
3 6 8 9 5 10
4 7 6 6 3 6
5 6 7 10 6 11

i,j 1 2 3 4 5
1 5 5 7 4 8 -4
2 6 5 8 3 7 -3
3 6 8 9 5 10 -5
4 7 6 6 3 6 -3
5 6 7 10 6 11 -6

i,j 1 2 3 4 5
1 1 1 3 0 4
2 3 2 5 0 4
3 1 3 4 0 5
4 4 3 3 0 3
5 0 1 4 0 5

-1 -3 -3

i,j 1 2 3 4 5
1 1 0 0 0 1
2 3 1 2 0 1
3 1 2 1 0 2
4 4 2 0 0 0
5 0 0 1 0 2

-1 -3 -3

cost reduction constant = 4+3+5+3+6+1+3+3 = 28
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LAP: The Hungarian Method - Example

Step 2 box and cross zeros

i,j 1 2 3 4 5

1 1 0 X0 X0 1

2 3 1 2 0 1
3 1 2 1 X0 2

4 4 2 0 X0 X0

5 0 X0 1 X0 2

Step 3 Every zero is either boxed or
crossed but each row and column does
not contain exactly one boxed zero →
optimality not reached yet.

Step 4 draw horizontal and vertical
lines

i,j 1 2 3 4 5

1 1 0 X0 X0 1

2 3 1 2 0 1
3 1 2 1 X0 2

4 4 2 0 X0 X0

5 0 X0 1 X0 2

Step 5 identify the smallest value of all
uncovered cells: 1. Subtract this value
from all uncovered cells and add it to
cells at intersections of two lines.
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LAP: The Hungarian Method - Example

Step 5 cont. Substract 1 from all
uncovered cells and add it to cells at
intersections of two lines.

i,j 1 2 3 4 5

1 1 0 0 1 1
2 2 0 1 0 0
3 0 1 0 0 1
4 4 2 0 1 0
5 0 0 1 1 2

Step 2 box and cross zeros

i,j 1 2 3 4 5

1 1 0 X0 1 1

2 2 X0 1 0 X0

3 X0 1 0 X0 1

4 4 2 X0 1 0

5 0 X0 1 1 2

→ There is no row or column with a
single 0. We will choose a row or
column with 2 zeros. We decide to box
cell (1,2).
→Now there a row with a single 0.
→There is again no row or column with
a single 0. We choose a row with two
zeros. We decide to box cell (2,4).
→There is a single zero in column 5.
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LAP: The Hungarian Method - Example

i,j 1 2 3 4 5

1 1 0 X0 1 1

2 2 X0 1 0 X0

3 X0 1 0 X0 1

4 4 2 X0 1 0

5 0 X0 1 1 2

Optimality reached. This problem has alternative optimal solutions.

Total costs Z = 28 + 1 = 29

Assignments: driver 1 on vehicle 2, driver 2 on vehicle 4, driver 3 on vehicle 3,

driver 4 on vehicle 5, driver 5 on vehicle 1.
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