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Transportation Logistics

The basics

Solution method classifications

Problems arising in the area of transportation can be solved by

... exact solution methods

... heuristics and metaheuristics

Exact methods

compute the proven optimal solution

Heuristic and metaheuristic methods

compute, hopefully good, approximate solutions. We do not know
if the result is optimal. These methods are mainly used for
problems that are known to be NP-hard.
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Solution method classifications

The selection of the type of method depends on

... available software

... cost-benefit considerations

... complexity of the problem

Complexity

O(1) O(n) O(nc)c > 1 O(cn)c > 1

constant linear polynomial exponential

determine if find max maximum solving the TSP
number is in an array matching for with dynamic
even or odd bipartite graphs programming

run time of Simplex for LPs (avg. case) is polynomial: linear # of
iterations wrt constraints; each iteration approx. a quadratic #
number of evaluations.

en.wikipedia.org/wiki/Big_O_notation
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Solution method classifications

Exact solution methods

Linear programs (LP): Simplex algorithm
Integer programs (IP): branch and bound, branch and cut,
branch and price...
Mixed integer programs (MIP): branch and bound, branch and
cut, branch and price...

c© R.F. Hartl, S.N. Parragh 6 / 105



Transportation Logistics

The basics

Solution method classifications

Exact solution methods

Linear programs (LP): Simplex algorithm
Integer programs (IP): branch and bound, branch and cut,
branch and price...
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For many problems that can be formulated as IPs or MIPs, so far,
no polynomial time algorithms are known. This is true for most
vehicle routing problems.
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For some problems the integrity requirements are fulfilled
automatically (Transportation Problem, Assignment Problem).
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Solution method classifications

Exact solution methods

Linear programs (LP): Simplex algorithm
Integer programs (IP): branch and bound, branch and cut,
branch and price...
Mixed integer programs (MIP): branch and bound, branch and
cut, branch and price...

For many problems that can be formulated as IPs or MIPs, so far,
no polynomial time algorithms are known. This is true for most
vehicle routing problems.

For some problems the integrity requirements are fulfilled
automatically (Transportation Problem, Assignment Problem).

In some cases, the optimization problem can be formulated as an
IP or MIP but there exist algorithms that solve them in polynomial
time.c© R.F. Hartl, S.N. Parragh 9 / 105
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Solution method classifications

Heuristics

Construction heuristics: generate a feasible solution from
scratch

Improvement heuristics: improve an existing feasible
solution

Combinations of both methods

Metaheuristics: generic methods, applicable to a wide range
of NP-hard problems

Construction heuristics and improvement heuristics are usually
tailored to the problem; metaheuristics apply general concepts;
within metaheuristics, construction and improvement heuristics
may be applied.
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Costs and distances

Decisions in many routing and transportation problems are made
on the basis of costs cij and distances dij

The most common distance measures:

Euclidean distance

Manhattan distance

Maximum distance

Distance based on street network
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Costs and distances

Euclidean Distance

x (1,1)

y (4,5)

3

4
d(x, y) =

√

n
∑

i=1
(xi − yi)2
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Costs and distances

Manhattan Distance

x (1,1)

y (4,5)

3

4 d(x, y) =
n
∑

i=1
|xi − yi|
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Costs and distances

Maximum Distance

x (1,1)

y (4,5)

4

3

d(x, y) = max
i=1...n

|xi − yi|

movement of cranes or plotter
pens
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The basics

Graphs

Many vehicle routing and transportation problems are defined on
graphs.

The weight of an arc or edge is used to represent cost, time or
distance.

The nodes or vertices of the graph represent facilities, customers,
depots, hubs, ....
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Our graph represents
a natural park and
each node represents
a view point. The
view points are
connected by hiking
trails which are
represented by the
edges.
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Graphs

Example 1

Problem situation

Telephone cables are to be installed in such a way that between all
view points a telephone connection is possible.
Where should the telephone cables (possible positions are the
edges) be positioned such that all stations are connected to the
telephone network and the total length of all the cables employed
is as short as possible?
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The basics

Graphs

Example 1

Problem situation

Telephone cables are to be installed in such a way that between all
view points a telephone connection is possible.
Where should the telephone cables (possible positions are the
edges) be positioned such that all stations are connected to the
telephone network and the total length of all the cables employed
is as short as possible?

Optimization problem

Minimum spanning tree.
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Graphs

Example 2

Problem situation

A group of hikers would like to know what’s the shortest path from
the entrance O to the viewpoint at T.
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Graphs

Example 2

Problem situation

A group of hikers would like to know what’s the shortest path from
the entrance O to the viewpoint at T.

Optimization problem

Shortest path.
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Graphs

Example 3

Problem situation

To preserve the wild life, each trail may only be traversed by a
given number of people per day (given by the weight of the edge).
All hikers enter the park at the entrance O.
How many hikers may at most reach the view point at T per day?
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The basics

Graphs

Example 3

Problem situation

To preserve the wild life, each trail may only be traversed by a
given number of people per day (given by the weight of the edge).
All hikers enter the park at the entrance O.
How many hikers may at most reach the view point at T per day?

Optimization problem

Maximum flow.
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The basics

Graphs

Example 4

Problem situation

At the end of the day one of the scouts has to check all viewpoints.
In which order should the view points be visited such that the total
travel time is minimized?
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The basics

Graphs

Example 4

Problem situation

At the end of the day one of the scouts has to check all viewpoints.
In which order should the view points be visited such that the total
travel time is minimized?

Optimization problem

Traveling salesman/salesperson problem (TSP).
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Graphs

Definitions

Graph

A graph consists of several nodes/vertices (more than 1) which are
connected by edges/arcs.
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Definitions

Graph

A graph consists of several nodes/vertices (more than 1) which are
connected by edges/arcs.

an undirected graph
(only edges)
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a directed graph (digraph)
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Graphs

Definitions

Graph

A graph consists of several nodes/vertices (more than 1) which are
connected by edges/arcs.

an undirected graph
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a mixed graph contains arcs and edges.
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Graphs

Definitions

Graph

A graph consists of several nodes/vertices (more than 1) which are
connected by edges/arcs.

an undirected graph
(only edges)
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a directed graph (digraph)
(only arcs)
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a mixed graph contains arcs and edges.
a complete graph: each pair of vertices is connected by an edge.
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Graphs

Definitions

Chain

A chain consists of several arcs which connect to nodes.

A

B

C
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Graphs

Definitions

Chain

A chain consists of several arcs which connect to nodes.

A

B

C

Path

Like a chain but oriented.

A

B

C
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Graphs

Definitions

Cycle

A cycle connects a node with itself without using an edge twice.

A

B

C
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The basics

Graphs

Definitions

Cycle

A cycle connects a node with itself without using an edge twice.

A

B

C

Loop

A loop connects an node with itself.
A simple graph is loopless.

B
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Graphs

Definitions

Tree

A tree is a connected graph that does not contain cycles.
A graph consisting of n nodes is connected if it contains (n− 1)
edges and no cycles.

A
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D

E

O
T
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Graphs

Definitions

Not a tree because of cycle

A

B
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D

E

O
T

Not a tree because not
connected

A

B

C

D

E

O
T

c© R.F. Hartl, S.N. Parragh 34 / 105



Transportation Logistics

The basics

Minimum spanning tree (MST)
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Minimum spanning tree (MST)
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Since our graph consists of n = 7 nodes our minimum spanning
tree has to consists of (n− 1)= 6 edges and it must not contain
cycles. It has a weight of 14.
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Minimum spanning tree (MST)

Kruskal’s algorithm

1 Find the shortest edge in the graph. This edge becomes the
first edge of the MST.

2 Repeat until all nodes are connected
Find the shortest edge that connects a not yet connected node
to a connected one.
Add this edge to the MST.

In the case of ambiguity (more than one edge could be chosen),
the selection can be done arbitrarily.

c© R.F. Hartl, S.N. Parragh 37 / 105



Transportation Logistics

The basics

Minimum spanning tree (MST)

Kruskal’s algorithm

1 Find the shortest edge in the graph. This edge becomes the
first edge of the MST.

2 Repeat until all nodes are connected
Find the shortest edge that connects a not yet connected node
to a connected one.
Add this edge to the MST.

In the case of ambiguity (more than one edge could be chosen),
the selection can be done arbitrarily.

MST( G, n )

sort the edges of G in ascending order in queue Qedges

while |EMST | < (n− 1) do
pop the first edge e from Qedges

if EMST ∪ {e} does not lead to a cycle then
EMST = EMST ∪ {e}

end if
end while

Complexity: O(|E| log |V |) V...setofvertices, E...setofedges
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Minimum spanning tree (MST)

Kruskal’s algorithm - Example

A

B

C

D

E

O
T

2

5

1

4

3

2

4

7

4

1

7

5

c© R.F. Hartl, S.N. Parragh 39 / 105



Transportation Logistics

The basics

Minimum spanning tree (MST)

Kruskal’s algorithm - Example
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Kruskal’s algorithm - Example
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Kruskal’s algorithm - Example
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Kruskal’s algorithm - Example
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Kruskal’s algorithm - Example
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Kruskal’s algorithm - Example
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Kruskal’s algorithm - Example
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Kruskal’s algorithm - Example
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Kruskal’s algorithm - Example
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Minimum spanning tree (MST)

Kruskal’s algorithm - Example
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Kruskal’s algorithm - Example
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Kruskal’s algorithm - Example
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Shortest path

Shortest path problem

Determine the shortest path in a graph from a source node O to a
sink node T .

Shortest path algorithms can be classified as follows:

Tree algorithms: determine the shortest path between two
nodes (Dijkstra, Bellman).

Methods that determine the shortest path from all nodes to
all other nodes (distance matrix!). (Triple algorithm)
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Shortest path

A shortest path algorithm

Source: Hillier, Lieberman (1995) ’Introduction to Operations Research’

set the origin node (O) to solved; n = 1

Repeat until the destination node T is reached
1 find nth nearest node to the origin. The nth nearest node can

be any node that is directly connected to a solved node.
2 n := n+ 1

For undirected, connected graphs without negative distances.
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Shortest path

A shortest path algorithm - Example

solved nodes closest total nth
directly connected connected distance nearest min last

n to unsolved nodes unsolved node involved node dist. connection
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Shortest path

A shortest path algorithm - Example

solved nodes closest total nth
directly connected connected distance nearest min last

n to unsolved nodes unsolved node involved node dist. connection
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Shortest path

A shortest path algorithm - Example

solved nodes closest total nth
directly connected connected distance nearest min last

n to unsolved nodes unsolved node involved node dist. connection
1 O A 2 A 2 OA
2,3 O C 4 C 4 OC
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Shortest path

A shortest path algorithm - Example

solved nodes closest total nth
directly connected connected distance nearest min last

n to unsolved nodes unsolved node involved node dist. connection
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Shortest path

A shortest path algorithm - Example

solved nodes closest total nth
directly connected connected distance nearest min last
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A shortest path algorithm - Example
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A shortest path algorithm - Example
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Shortest path

Dijkstra’s algorithm

1 Initialization (n = 0)
The tentative shortest distance of each node i from the origin
D[i] is set to the direct distance d0i and node 0 is set to
visited. The tentative direct predecessor of each i is set to the
source V [i] = O.

2 Repeat until T is visited /all nodes are visited (n > 0)

the current node i is the unvisited node with the minimal
distance from O, given by D[i]. It is set to visited. This node
is the n-th next node to the source O. The shortest distance
to O is D[i] and its direct predecessor is V [i].
Determine all unvisited nodes j, which are reachable from i via
a direct edge. if D[i] + dij < D[j] then the path via i to j is
shorter than the so far known shortest path to j and we set
D[j] = D[i] + dij and V [j] = i.

dij =

{

length of the edge between i and j, if edge exists.

∞, otherwise.
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Dijkstra’s Algorithm - Example

D[O], D[A], D[B], D[C], D[D], D[E], D[T ],

n V [O] V [A] V [B] V [C] V [D] V [E] V [T ] visited
0
1
2
3
4
5
6

O

0

A

2

B

5

C

4

D

E

T

2
5

1

4

3

2

4

7

4

1

7

5
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Dijkstra’s Algorithm - Example

D[O], D[A], D[B], D[C], D[D], D[E], D[T ],

n V [O] V [A] V [B] V [C] V [D] V [E] V [T ] visited
0 0, O 2, O 5, O 4, O ∞, O ∞, O ∞, O O, 0
1
2
3
4
5
6

O

0

A

2

B

5

C

4

D

E

T

2
5

1

4

3

2

4

7

4

1

7

5
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D[O], D[A], D[B], D[C], D[D], D[E], D[T ],

n V [O] V [A] V [B] V [C] V [D] V [E] V [T ] visited
0 0, O 2, O 5, O 4, O ∞, O ∞, O ∞, O O, 0
1 2, O 5, O 4, O ∞, O ∞, O ∞, O
2
3
4
5
6

O

0

A

2

B

5

C

4

D

E

T

2
5

1

4

3

2

4

7

4

1

7

5
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D[O], D[A], D[B], D[C], D[D], D[E], D[T ],

n V [O] V [A] V [B] V [C] V [D] V [E] V [T ] visited
0 0, O 2, O 5, O 4, O ∞, O ∞, O ∞, O O, 0
1 2, O 5, O 4, O ∞, O ∞, O ∞, O A, 2
2
3
4
5
6

O

0

A

2

B

C

4

D

E

T

2
5

1

4

3

2

4

7

4

1

7

5
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Dijkstra’s Algorithm - Example

D[O], D[A], D[B], D[C], D[D], D[E], D[T ],

n V [O] V [A] V [B] V [C] V [D] V [E] V [T ] visited
0 0, O 2, O 5, O 4, O ∞, O ∞, O ∞, O O, 0
1 2, O 5, O 4, O ∞, O ∞, O ∞, O A, 2
2 4, A 4, O 9, A ∞, O ∞, O
3
4
5
6

O

0

A

2

B

4

C

4

D

9

E

T

2
5

1

4

3

2

4

7

4

1

7

5
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Dijkstra’s Algorithm - Example

D[O], D[A], D[B], D[C], D[D], D[E], D[T ],

n V [O] V [A] V [B] V [C] V [D] V [E] V [T ] visited
0 0, O 2, O 5, O 4, O ∞, O ∞, O ∞, O O, 0
1 2, O 5, O 4, O ∞, O ∞, O ∞, O A, 2
2 4, A 4, O 9, A ∞, O ∞, O B, 4
3
4
5
6

O

0

A

2

B

4

C

4

D

9

E

T

2
5

1

4

3

2

4

7

4

1

7

5
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Dijkstra’s Algorithm - Example

D[O], D[A], D[B], D[C], D[D], D[E], D[T ],

n V [O] V [A] V [B] V [C] V [D] V [E] V [T ] visited
0 0, O 2, O 5, O 4, O ∞, O ∞, O ∞, O O, 0
1 2, O 5, O 4, O ∞, O ∞, O ∞, O A, 2
2 4, A 4, O 9, A ∞, O ∞, O B, 4
3 4, O 8, B 7, B ∞, O
4
5
6

O

0

A

2

B

4

C

4

D

8

E

7

T

2
5

1

4

3

2

4

7

4

1

7

5
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Dijkstra’s Algorithm - Example

D[O], D[A], D[B], D[C], D[D], D[E], D[T ],

n V [O] V [A] V [B] V [C] V [D] V [E] V [T ] visited
0 0, O 2, O 5, O 4, O ∞, O ∞, O ∞, O O, 0
1 2, O 5, O 4, O ∞, O ∞, O ∞, O A, 2
2 4, A 4, O 9, A ∞, O ∞, O B, 4
3 4, O 8, B 7, B ∞, O C, 4
4
5
6

O

0

A

2

B

4

C

4

D

8

E

7

T

2
5

1

4

3

2

4

7

4

1

7

5
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Dijkstra’s Algorithm - Example

D[O], D[A], D[B], D[C], D[D], D[E], D[T ],

n V [O] V [A] V [B] V [C] V [D] V [E] V [T ] visited
0 0, O 2, O 5, O 4, O ∞, O ∞, O ∞, O O, 0
1 2, O 5, O 4, O ∞, O ∞, O ∞, O A, 2
2 4, A 4, O 9, A ∞, O ∞, O B, 4
3 4, O 8, B 7, B ∞, O C, 4
4 8, B 7, B ∞, O
5
6

O

0

A

2

B

4

C

4

D

8

E

7

T

2
5

1

4

3

2

4

7

4

1

7

5

c© R.F. Hartl, S.N. Parragh 70 / 105



Transportation Logistics

The basics

Shortest path

Dijkstra’s Algorithm - Example

D[O], D[A], D[B], D[C], D[D], D[E], D[T ],

n V [O] V [A] V [B] V [C] V [D] V [E] V [T ] visited
0 0, O 2, O 5, O 4, O ∞, O ∞, O ∞, O O, 0
1 2, O 5, O 4, O ∞, O ∞, O ∞, O A, 2
2 4, A 4, O 9, A ∞, O ∞, O B, 4
3 4, O 8, B 7, B ∞, O C, 4
4 8, B 7, B ∞, O E, 7
5
6

O

0

A

2

B

4

C

4

D

8

E

7

T

2
5

1

4

3

2

4

7

4

1

7

5
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Dijkstra’s Algorithm - Example

D[O], D[A], D[B], D[C], D[D], D[E], D[T ],

n V [O] V [A] V [B] V [C] V [D] V [E] V [T ] visited
0 0, O 2, O 5, O 4, O ∞, O ∞, O ∞, O O, 0
1 2, O 5, O 4, O ∞, O ∞, O ∞, O A, 2
2 4, A 4, O 9, A ∞, O ∞, O B, 4
3 4, O 8, B 7, B ∞, O C, 4
4 8, B 7, B ∞, O E, 7
5 8, B,E 14, E
6

O

0

A

2

B

4

C

4

D

8

E

7

T

14
2

5

1

4

3

2

4

7

4

1

7

5
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Dijkstra’s Algorithm - Example

D[O], D[A], D[B], D[C], D[D], D[E], D[T ],

n V [O] V [A] V [B] V [C] V [D] V [E] V [T ] visited
0 0, O 2, O 5, O 4, O ∞, O ∞, O ∞, O O, 0
1 2, O 5, O 4, O ∞, O ∞, O ∞, O A, 2
2 4, A 4, O 9, A ∞, O ∞, O B, 4
3 4, O 8, B 7, B ∞, O C, 4
4 8, B 7, B ∞, O E, 7
5 8, B,E 14, E D, 8
6

O

0

A

2

B

4

C

4

D

8

E

7

T

14
2

5

1

4

3

2

4

7

4

1

7

5

c© R.F. Hartl, S.N. Parragh 73 / 105



Transportation Logistics

The basics

Shortest path

Dijkstra’s Algorithm - Example

D[O], D[A], D[B], D[C], D[D], D[E], D[T ],

n V [O] V [A] V [B] V [C] V [D] V [E] V [T ] visited
0 0, O 2, O 5, O 4, O ∞, O ∞, O ∞, O O, 0
1 2, O 5, O 4, O ∞, O ∞, O ∞, O A, 2
2 4, A 4, O 9, A ∞, O ∞, O B, 4
3 4, O 8, B 7, B ∞, O C, 4
4 8, B 7, B ∞, O E, 7
5 8, B,E 14, E D, 8
6 13, D

O

0

A

2

B

4

C

4

D

8

E

7

T

13
2

5

1

4

3

2

4

7

4

1

7

5
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D[O], D[A], D[B], D[C], D[D], D[E], D[T ],

n V [O] V [A] V [B] V [C] V [D] V [E] V [T ] visited
0 0, O 2, O 5, O 4, O ∞, O ∞, O ∞, O O, 0
1 2, O 5, O 4, O ∞, O ∞, O ∞, O A, 2
2 4, A 4, O 9, A ∞, O ∞, O B, 4
3 4, O 8, B 7, B ∞, O C, 4
4 8, B 7, B ∞, O E, 7
5 8, B,E 14, E D, 8
6 13, D T, 13

O

0

A

2

B

4

C

4

D

8

E

7

T

13
2

5

1

4

3

2

4

7

4

1

7

5
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Dijkstra’s Algorithm - an Example

Two shortest paths.

O

A

B

D

T

2
2

4 5

O

A

B

D

E

T

2
2

3

1

5

c© R.F. Hartl, S.N. Parragh 76 / 105



Transportation Logistics

The basics

Shortest path

Bellman(-Ford) algorithm

Bellman invented dynamic programming. The Bellman(-Ford)
algorithm for shortest path problems is sometimes referred to as
label correcting algorithm.

1 Initialization set D[O] = 0, for all other nodes i set D[i] = ∞
2 Repeat |V | − 1 times

Repeat for each edge (i, j)

if D[j] > D[i] + dij then
D[j] = D[i] + dij , V [j] = i

3 Repeat for each edge (i, j)

if D[i] + dij < D[j] then
Error: Graph contains a negative weight cycle.

Complexity: O(|V ||E|) (V ...set of vertices; E...set of edges)
For directed graphs. Edge weights/distances may be negative. (Dijkstra’s algorithm
cannot be applied in this case)

Source: Corman et al. (2001) Introduction to algorithms, 2nd edition
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Bellman(-Ford) algorithm - Example

O

V [O] = −
D[O] = 0 A

V [A] = −
D[A] = ∞

B

V [B] = −
D[B] = ∞

C

V [C] = −
D[C] = ∞

T

V [T ] = −
D[T ] = ∞

6

7

8

5

-4-3

9

-2

2

7

Initialization

dOA = 6, dOB = 7, dAB = 8, dAC = 5, dAT = −4, dBC = −3, dCA = −2, dTO = 2, dTC = 7

(we iterate over the edges in this order)
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Bellman(-Ford) algorithm - Example

O

V [O] = −
D[O] = 0 A

V [A] = −
D[A] = ∞

B

V [B] = −
D[B] = ∞

C

V [C] = −
D[C] = ∞

T

V [T ] = −
D[T ] = ∞

6

7

8

5

-4-3

9

-2

2

7

Initialization

O

V [O] = −
D[O] = 0 A

V [A] = O

D[A] = 6

B

V [B] = O

D[B] = 7

C

V [C] = −
D[C] = ∞

T

V [T ] = −
D[T ] = ∞

6

7

6

7

8

5

-4-3

9

-2

2

7

Iteration 1

dOA = 6, dOB = 7, dAB = 8, dAC = 5, dAT = −4, dBC = −3, dCA = −2, dTO = 2, dTC = 7

(we iterate over the edges in this order)
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Bellman(-Ford) algorithm - Example

O

V [O] = −
D[O] = 0 A

V [A] = O

D[A] = 6

B

V [B] = O

D[B] = 7

C

V [C] = A,B

D[C] = 11, 4

T

V [T ] = A

D[T ] = 2

6

7

8

5

-4
-4

-3
-3

9

-2

2

7

Iteration 2

dOA = 6, dOB = 7, dAB = 8, dAC = 5, dAT = −4, dBC = −3, dCA = −2, dTO = 2, dTC = 7

(we iterate over the edges in this order)
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Bellman(-Ford) algorithm - Example

O

V [O] = −
D[O] = 0 A

V [A] = O

D[A] = 6

B

V [B] = O

D[B] = 7

C

V [C] = A,B

D[C] = 11, 4

T

V [T ] = A

D[T ] = 2

6

7

8

5

-4
-4

-3
-3

9

-2

2

7

Iteration 2

O

V [O] = −
D[O] = 0 A

V [A] = A

D[A] = 2

B

V [B] = O

D[B] = 7

C

V [C] = B

D[C] = 4

T

V [T ] = A

D[T ] = 2

6

7

8

5

-4-3

9

-2-2

2

7

Iteration 3

dOA = 6, dOB = 7, dAB = 8, dAC = 5, dAT = −4, dBC = −3, dCA = −2, dTO = 2, dTC = 7

(we iterate over the edges in this order)
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Bellman(-Ford) algorithm - Example

O

V [O] = −
D[O] = 0 A

V [A] = C

D[A] = 2

B

V [B] = O

D[B] = 7

C

V [C] = B

D[C] = 3

T

V [T ] = A,A

D[T ] = 2,−2

6

7

8

5

-4
-4-3

9

-2

2

7

Iteration 4

dOA = 6, dOB = 7, dAB = 8, dAC = 5, dAT = −4, dBC = −3, dCA = −2, dTO = 2, dTC = 7

(we iterate over the edges in this order)
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Shortest paths between all nodes in the network

We want to determine the shortest paths between every pair of
nodes in our graph.

Two solutions:

1 use a shortest path algorithm and use every node as the
source node in turn.

2 BETTER: apply the Triple algorithm.
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The Triple Algorithm

kij ...shortest distance between i and j

vij ...direct predecessor of j

1 Initialization
set kij = dij; set vij = i

2 Repeat for each vertex n ∈ V

1 for all i and j

if kin + knj < kij then the new path via n is shorter than the
so far known shortest path from i to j and we se
kij = kin + knj
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The Triple algorithm - Example

A

B

C

D

E

O
T

2

5

1

4

3

2

4

7

4

1

7

5

The kij matrix.
O A B C D E T

O 0 2 5 4 ∞ ∞ ∞

A 2 0 2 ∞ 7 ∞ ∞

B 5 2 0 1 4 3 ∞

C 4 ∞ 1 0 ∞ 4 ∞

D ∞ 7 4 ∞ 0 1 5

E ∞ ∞ 3 4 1 0 7

T ∞ ∞ ∞ ∞ 5 7 0

Initialization
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The Triple algorithm - Example

The kij matrix.
O A B C D E T

O 0 2 5 4 ∞ ∞ ∞

A 2 0 2 6 7 ∞ ∞

B 5 2 0 1 4 3 ∞

C 4 6 1 0 ∞ 4 ∞

D ∞ 7 4 ∞ 0 1 5

E ∞ ∞ 3 4 1 0 7

T ∞ ∞ ∞ ∞ 5 7 0

Paths via O
e.g., from A to C: previously no
connection; now A-O-C: 2 + 4 = 6
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The Triple algorithm - Example

The kij matrix.
O A B C D E T

O 0 2 5 4 ∞ ∞ ∞

A 2 0 2 6 7 ∞ ∞

B 5 2 0 1 4 3 ∞

C 4 6 1 0 ∞ 4 ∞

D ∞ 7 4 ∞ 0 1 5

E ∞ ∞ 3 4 1 0 7

T ∞ ∞ ∞ ∞ 5 7 0

Paths via O
e.g., from A to C: previously no
connection; now A-O-C: 2 + 4 = 6

The kij matrix.
O A B C D E T

O 0 2 4 4 9 ∞ ∞

A 2 0 2 6 7 ∞ ∞

B 4 2 0 1 4 3 ∞

C 4 6 1 0 13 4 ∞

D 9 7 4 13 0 1 5

E ∞ ∞ 3 4 1 0 7

T ∞ ∞ ∞ ∞ 5 7 0

Paths via A
e.g., from O to B: previous distance
5; now O-A-B: 2 + 2 = 4
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The Triple algorithm - Example

The kij matrix.
O A B C D E T

O 0 2 4 4 8 7 ∞

A 2 0 2 3 6 5 ∞

B 4 2 0 1 4 3 ∞

C 4 3 1 0 5 4 ∞

D 8 6 4 5 0 1 5

E 7 5 3 4 1 0 7

T ∞ ∞ ∞ ∞ 5 7 0

Paths via B
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The Triple algorithm - Example

The kij matrix.
O A B C D E T

O 0 2 4 4 8 7 ∞

A 2 0 2 3 6 5 ∞

B 4 2 0 1 4 3 ∞

C 4 3 1 0 5 4 ∞

D 8 6 4 5 0 1 5

E 7 5 3 4 1 0 7

T ∞ ∞ ∞ ∞ 5 7 0

Paths via B

The kij matrix.
O A B C D E T

O 0 2 4 4 8 7 ∞

A 2 0 2 3 6 5 ∞

B 4 2 0 1 4 3 ∞

C 4 3 1 0 5 4 ∞

D 8 6 4 5 0 1 5

E 7 5 3 4 1 0 7

T ∞ ∞ ∞ ∞ 5 7 0

Paths via C
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The Triple algorithm - Example

The kij matrix.
O A B C D E T

O 0 2 4 4 8 7 13

A 2 0 2 3 6 5 11

B 4 2 0 1 4 3 9

C 4 3 1 0 5 4 10

D 8 6 4 5 0 1 5

E 7 5 3 4 1 0 6

T 13 11 9 10 5 6 0

Paths via D
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The Triple algorithm - Example

The kij matrix.
O A B C D E T

O 0 2 4 4 8 7 13

A 2 0 2 3 6 5 11

B 4 2 0 1 4 3 9

C 4 3 1 0 5 4 10

D 8 6 4 5 0 1 5

E 7 5 3 4 1 0 6

T 13 11 9 10 5 6 0

Paths via D

The kij matrix.
O A B C D E T

O 0 2 4 4 8 7 13

A 2 0 2 3 6 5 11

B 4 2 0 1 4 3 9

C 4 3 1 0 5 4 10

D 8 6 4 5 0 1 5

E 7 5 3 4 1 0 6

T 13 11 9 10 5 6 0

Paths via E
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The Triple algorithm - Example

The kij matrix.
O A B C D E T

O 0 2 4 4 8 7 13

A 2 0 2 3 6 5 11

B 4 2 0 1 4 3 9

C 4 3 1 0 5 4 10

D 8 6 4 5 0 1 5

E 7 5 3 4 1 0 6

T 13 11 9 10 5 6 0

Paths via E

No further changes.
Distance matrix complete.

The first row of the matrix
corresponds to the solutions of
our tree algorithms!
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The maximum flow problem

Determine the maximum flow from a source to a sink node in a
given graph.

In this case, the weights of the edges correspond to capacities, i.e.
the maximum flow on this edge.
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Ford-Fulkerson Algorithm

a.k.a. the ’Augmenting path algorithm’

1 initialize the flow f to 0
2 Repeat while there exists an augmenting path p from O to T

augment the flow f along path p: identify the residual capacity
c∗ of the path p and decrease by c∗ the residual capacity on
each arc of the path p and increase the residual capacity of
each arc in the opposite direction on the path p.

An augmenting path is a directed path from O to T in the residual
network such that every arc on the path has strictly positive
residual capacity.
Source: Corman et al. (2001) Introduction to algorithms, 2nd edition

Hillier, Lieberman (1995) ’Introduction to Operations Research’
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The second augmenting path p = O − C − E − T and c∗ = 4 → f = 8
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The third augmenting path p = O − A−B − E − T and c∗ = 2 → f = 10
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The fourth augmenting path p = O −B − E −D − T and c∗ = 1 → f = 11
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No additional augmenting path; max flow f = 11
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Max-flow min-cut theorem

Cut

any set of directed arcs containing at
least one arc from every directed
path from O (supply) to T (demand
node).

Cut value

sum of the capacities of the arcs (in
the specified direction) of the cut.

Max-flow min-cut theorem

for any network with a single supply
and a single demand node, the
maximum feasible flow is equal to
the minimum cut value across all
cuts of the network.

A

B

C

D

E

O

T

2/2

5/5

1/0

4/4

3/3

2/2

4/4

7/0

4/4

1/1

7/6

5/5

max-flow = min-cut = 11
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