Transportation Logistics Part I and II

Exercise 1

Let G = (V, E) denote a graph consisting of vertices $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and arcs $A = \{(1, 2), (1, 3), (2, 4), (3, 2), (4, 3), (4, 5), (4, 6), (5, 3), (5, 7), (6, 8), (7, 4), (7, 6), (7, 8)\}.$

a) Draw graph G. Is G a tree, a digraph? Does G contain cycles? If yes, give an example.

b) Assume now that the arcs of G are in fact edges and that they have the following weights:

 $c_{12} = 2, c_{13} = 3, c_{24} = 3, c_{32} = 2, c_{43} = 1, c_{45} = 3, c_{46} = 6, c_{53} = 6, c_{57} = 7, c_{68} = 2, c_{74} = 4, c_{76} = 5, c_{78} = 3.$

Determine the minimum spanning tree using Kruskal's algorithm.

Exercise 2

a) Determine the shortest path between 1 and 10 with an algorithm of your choice.

b) In which case should the Bellman-Ford algorithm be employed?

c) Assume now that the weights of the arcs correspond to arc capacities. Compute the maximum flow between vertex 1 and 10 (use the augmenting path algorithm) and identify a minimum cut.

Exercise 3

A weighted digraph with vertices $V = \{1, 2, 3, 4, 5\}$ is given by the following matrix (each entry denotes the weight of the arc connecting vertices i and j; ∞ indicates that the according arc does not exist.)

c_{ij}	1	2	3	4	5
1	0	∞	6	∞	∞
2	3	0	5	9	10
3	∞	4	0	$\overline{7}$	2
4	∞	∞	6	0	9
5	∞	∞	∞	8	0

Draw the graph and use the Triple algorithm to find the shortest path between all vertices i and $j \in V$. In addition to the shortest distances, we are also interested in knowing the shortest path between each vertex pair.

Exercise 4

In Tirol, a new waste incineration plant shall be built. The inhabitants (in thousands) of the relevant municipalities are given in the following table:

Municipality	Inhabitants
Kitzbühel	$\frac{100}{100}$
Reutte	$\overline{70}$
Kufstein	40
Innsbruck	90
Imst	$\frac{50}{50}$
Landeck	70

The travel times (in minutes) to and from each of the possible locations are assumed to be as follows:

	<u>Kitzbühel</u>	Reutte	Kufstein	Innsbruck	Imst	Landeck
Kitzbühel	0	3	5	$\frac{12}{12}$	7	7
$\frac{\text{Reutte}}{\text{Reutte}}$	4	0	2	10	4	$\frac{10}{10}$
Kufstein	5	1	0	8	4	11
Innsbruck	8	9	2	0	6	$\frac{13}{13}$
Imst	5	3	7	6	0	7
Landeck	2	7	14	$\frac{13}{13}$	7	0

a) Determine the best location for the waste incineration plant.

b) Give an example for a practical decision problem where the determination of the In-Median is useful.

Exercise 5

Kärnten plans to build a new fire department for the municipalities Hermagor, Spittal an der Drau, Völkermarkt, Feldkirchen and Klagenfurt. The decision makers aim at