Transportation Logistics Part I and II

Exercise 1

Let $G=(V, E)$ denote a graph consisting of vertices $V=\{1,2,3,4,5,6,7,8\}$ and arcs $A=\{(1,2),(1,3),(2,4),(3,2),(4,3),(4,5),(4,6),(5,3),(5,7),(6,8),(7,4),(7,6),(7,8)\}$.
a) Draw graph G. Is G a tree, a digraph? Does G contain cycles? If yes, give an example.
b) Assume now that the arcs of G are in fact edges and that they have the following weights:

$$
\begin{aligned}
& c_{12}=2, c_{13}=3, c_{24}=3, c_{32}=2, c_{43}=1, c_{45}=3, c_{46}=6, \\
& c_{53}=6, c_{57}=7, c_{68}=2, c_{74}=4, c_{76}=5, c_{78}=3 .
\end{aligned}
$$

Determine the minimum spanning tree using Kruskal's algorithm.

Exercise 2

a) Determine the shortest path between 1 and 10 with an algorithm of your choice.
b) In which case should the Bellman-Ford algorithm be employed?
c) Assume now that the weights of the arcs correspond to arc capacities. Compute the maximum flow between vertex 1 and 10 (use the augmenting path algorithm) and identify a minimum cut.

Exercise 3

A weighted digraph with vertices $V=\{1,2,3,4,5\}$ is given by the following matrix (each entry denotes the weight of the arc connecting vertices i and $j ; \infty$ indicates that the according arc does not exist.)

$c_{i j}$	1	2	3	4	5
1	0	∞	6	∞	∞
2	3	0	5	9	10
3	∞	4	0	7	2
4	∞	∞	6	0	9
5	∞	∞	∞	8	0

Draw the graph and use the Triple algorithm to find the shortest path between all vertices i and $j \in V$. In addition to the shortest distances, we are also interested in knowing the shortest path between each vertex pair.

Exercise 4

In Tirol, a new waste incineration plant shall be built. The inhabitants (in thousands) of the relevant municipalities are given in the following table:

Municipality	Inhabitants
Kitzbühel	100
Reutte	70
Kufstein	40
Innsbruck	90
Imst	50
Landeck	70

The travel times (in minutes) to and from each of the possible locations are assumed to be as follows:

	Kitzbühel	Reutte	Kufstein	Innsbruck	Imst	Landeck
Kitzbühel	0	3	5	12	7	7
Reutte	4	0	2	10	4	10
Kufstein	5	1	0	8	4	11
Innsbruck	8	9	2	0	6	13
Imst	5	3	7	6	0	7
Landeck	2	7	14	13	7	0

a) Determine the best location for the waste incineration plant.
b) Give an example for a practical decision problem where the determination of the In-Median is useful.

Exercise 5

Kärnten plans to build a new fire department for the municipalities Hermagor, Spittal an der Drau, Völkermarkt, Feldkirchen and Klagenfurt. The decision makers aim at

