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Collaborative transportation, as an emerging new mode, represents one of the major developing trends of
transportation systems. Focusing on the full truckloads multi-depot capacitated vehicle routing problem
in carrier collaboration, this paper proposes a mathematical programming model and its corresponding
graph theory model, with the objective of minimizing empty vehicle movements. A two-phase greedy
algorithm is given to solve practical large-scale problems. In the first phase, a set of directed cycles is
created to fulfil the transportation orders. In the second phase, chains that are composed of cycles are
generated. Furthermore, a set of local search strategies is put forward to improve the initial results. To
evaluate the performance of the proposed algorithms, two lower bounds are developed. Finally, compu-
tational experiments on various randomly generated problems are conducted. The results show that the
proposed methods are effective and the algorithms can provide reasonable solutions within an acceptable
computational time.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, shippers and carriers are looking for ways to oper-
ate more efficiently in response to ever stricter customer demands,
surging costs of fuel and carrier insurance, and more intensive mar-
ket competition in the transportation industry. Shippers and carri-
ers have developed various strategies to improve the efficiency of
their internal operations with focus on reducing individual operat-
ing costs. However, more opportunities exist for increasing overall
profit through collaboration among shippers and carriers, since as-
set repositioning is very common in the transportation industry. As-
set repositioning is empty movement from a delivery location to a
pickup location. It is reported that in the USA, about 18% of daily
truck movements are empty [1]. If asset repositioning could be re-
duced, the total transportation cost will decrease. Hence, some com-
panies have adopted a new transportationmodel called collaborative
transportation (CT), which brings together all logistics participants
to improve the overall performance of transportation planning and
scheduling.

CT can be classified in two ways, i.e., as the collaboration
among shippers and that among carriers. When shippers consider
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collaborating, their goal is to identify sets of lanes that can be sub-
mitted to a carrier as a bundle, in the hope that this results in more
favorable rates. A lane corresponds to a shipment delivery from an
origin to a destination with one full truckload. The truckload ship-
per collaboration problem is formulated as the lane cover problem
(LCP), i.e., covering a set of lanes with a set of cycles of minimum
cost. It is proven that the distance constrained lane covering prob-
lem (DCLCP) and the cardinality constrained lane covering problem
(CCLCP) are NP-hard and thus a greedy algorithm is proposed for
solving the CCLCP [1].

Compared to shipper collaboration, carrier collaboration has re-
ceived less research attention. At present, most carriers collect freight
requests from shippers and then optimize the vehicle routing indi-
vidually. However, carriers may also benefit from the collaboration
if they form an organizational system to reduce overall system-wide
costs and thus increase each partner's profit.

In this paper, we tackle a special optimization problem in the
carrier collaboration system called the multi-depot capacitated arc
routing problem with full truckloads (MDCARPFL). We may assume
that the collaborative carriers receive a set of transportation orders of
specific load (maybe either smaller or larger than the vehicle capac-
ity), the pickup location (i.e., the origin) and the delivery location (i.e.,
the destination). If each carrier provides only full truckload trans-
port between different locations, the carriers are required to fulfil
the orders at minimal cost, using a fleet of vehicles located at several
depots. The problem can thus be formulated as the MDCARPFL and
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has significant applications in carrier collaboration. However, solv-
ing the MDCARPFL for minimizing asset repositioning in a logistics
network is not easy. Existing exact methods, as proposed by Aruna-
puram et al. [2], can solve relatively simple problems optimally. For
large scale problem instances, as typically found in carrier collabo-
ration, it is not practicable to find the optimal solution. Therefore,
powerful heuristic algorithms should be established to tackle real-
world larger-scale instances.

The rest of this paper is organized as follows. Section 2 introduces
the relevant literature. A mathematical model for the MDCARPFL is
developed in Section 3. Section 4 puts forward two lower bounds for
the problem. Section 5 proposes the heuristic algorithms for solving
the problem. Computational experiments are described in Section 6.
Finally, conclusions and future work are given in Section 7.

2. Literature review

The MDCARPFL is a variant of the capacitated arc routing problem
(CARP), introduced by Golden and Wong [3]. The CARP is probably
the most significant problem in the area of arc routing, since it arises
naturally in a number of practical contexts [4–6]. The CARP consists
of finding a set of vehicle routes of minimum cost, such that every
required edge is serviced by one vehicle, each route starts and ends
at the depot and the total demand serviced by a route does not
exceed the vehicle capacity. The CARP is NP-hard. Golden and Wong
[3] showed that even 1.5-approximation for the CARP is also NP-
hard. Exact methods for the CARP have only been able to solve small
problems to optimality [7–10]. To solve problems of a realistic size,
researchers have resorted to heuristic algorithms.

Dror [11] discusses different heuristics for the CARP, including
simple constructive heuristics and some metaheuristic algorithms.
Hertz and Mittaz [12] give an adaptation of variable neighborhood
search (VNS) to the CARP. Muyldermans et al. [13] develop 2-opt
and 3-opt local search algorithms for the arc and general routing
problems. Two forms of the 2-opt and 3-opt approaches are applied
to the problems, which are simpler than the methods developed
by Hertz et al. [14]. Based on these procedures, Beullens et al. [15]
introduce a guided local search heuristic for the CARP. Experiments
on standard benchmark problems and the newly developed instances
indicate that the algorithm is capable of finding optimal or near-
optimal solutions within a limited computation time. Lacomme et
al. [16] present some powerful memetic algorithms for the CARP.
Based on the tabu search algorithm, Eglese and Li [17], Brandão and
Eglese [18] and Greistorfer [19] present the algorithms for the CARP.
Brandão and Eglese [18] propose a deterministic algorithm that does
not require the use of random parameter values, so that the results
are fully reproducible, while Greistorfer [19] makes use of the scatter
search. Ergun et al. [1] propose a greedy algorithm for the shipper
collaboration problem, which is similar to the CARP, but ignores the
constraint that each vehicle tour must start and finish at a designated
depot.

Contrary to the CARP, the multiple depots CARP (MDCARP) has
received relatively less attention. Eglese [20] presents a two-stage
solution procedure for the MDCARP. In the first stage, an Eulerian
graph is partitioned into small cycles, and cycles are aggregated into
routes using a greedy saving heuristic. In the second stage, a simu-
lated annealing algorithm is adopted to improve the solution. Am-
berg et al. [21] investigate a two-phase algorithm for the MDCARP.
First, the problem of finding the specific routes is modeled as the ca-
pacitated minimum spanning tree problem and a heuristic is applied
to yield initial solutions. Second, two metaheuristics are applied to
get better routes.

To the best of our knowledge, only Arunapuram et al. [2] have
presented an exact algorithm for solving the MDCARPFL so far. They
introduce a column generation method that takes advantage of the

special structure of the linear programming sub-problems at the
nodes of the branch-and-bound tree. However, the exact algorithm
is unable to solve the instances when the number of lanes exceeds
200.

Although many heuristics have been proposed for the CARP, they
cannot be applied directly because of three major differences be-
tween the CARP and MDCARPFL, which have not been considered
together in existing literature. First, in the CARP each vehicle starts
and returns to one designated depot, while in the MDCARPFL vehi-
cles are located at several depots. Second, in the CARP each order
only has one full-truck demand, while the MDCARPFL allows each
order demand to be any integer multiple of full truckloads. Finally, in
the MDCARPFL all the orders are directed, while in the CARP trans-
portation orders are undirected. So far little research has been done
on this important and complex problem. Arunapuram et al. [2] in-
troduce a complicated exact method for the MDCARPFL, which can
only solve small-scale problems. To tackle large-scale instances, ef-
ficient heuristics are required.

3. Problem formulation

The MDCARPFL studied in this paper can be described formally
as follows. A fleet of vehicles is located at several depots, and a
number of transportation orders need to be served by the vehicles.
Each vehicle must start and end at the same depot. The objective
of the problem is to determine the tours for the vehicles that serve
all the orders and minimize the total shipping costs. The underlying
assumptions of the model are given as follows:

(1) All orders are known in advance and kept unchanged during the
transportation process.

(2) There is no transportation order between the depot and the
customer node.

(3) All the vehicles are identical. The vehicle capacity is Q.
(4) The vehicle shipping costs are equivalent to the travel distance.
(5) A vehicle's tour must not exceed a given distance span H. This

restriction ensures that the maintenance intervals for vehicles
are respected. For some problems the restriction is that a tour
must not exceed a given time span, which can be dealt with
analogously.

(6) The vehicles only provide full truckload transportation. That
means the goods are transported directly from the pickup loca-
tion to the delivery location. If an order has the demand of q,
the serving number to this order is �q/Q� (the smallest integer
no less than q/Q).

To clearly describe the MDCARPFL, an example with 2 depots
and 10 orders is shown in Fig. 1, where the dashed lines represent
the empty vehicle movements, and the solid lines correspond to the
transportation lanes. Among all orders, order (A, B) and order(C, D)
are represented as two separate lanes, since each of them has two
full truckloads. Therefore, there are 12 lanes in Fig. 1. All the lanes
are covered by three tours, i.e., Tour 1, Tour 2 and Tour 3. Each tour
is assigned to one vehicle, starting from a depot, serving a number
of lanes and finally returning to the departing depot. One order may
be served by one or several vehicles in this problem. For example,
order (A, B) is transformed into two lanes and served by one vehicle,
i.e., vehicle 3. Order (C, D) is also expressed as two lanes, but they
are covered by Tour 1 and Tour 2 separately, which means vehicle
1 and vehicle 2 fulfil order (C, D) jointly.

The exact formulation for the MDCARPFL is given as follows.
Parameters:

D the set of depots
V the set of vehicles
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Fig. 1. MDCARPFL example.

P+ the set of pickup locations
P− the set of delivery locations
P the set of P+ ∪ P−

qij the non-negative service requirement that transported from
origin i to destination j, ∀i ∈ P+, j ∈ P−

cij the distance from location i to location j, ∀i, j ∈ P ∪ D

Decision variables:

xvij the number of trips from location i to location j performed by
vehicle v

Objective:

min
∑
v∈V

∑
i∈P∪D

∑
j∈P∪D

cijx
v
ij (1)

Subject to:

∑
v∈V

xvij �
⌈
qij
Q

⌉
∀i ∈ P+, j ∈ P− (2)

∑
j∈P∪D

xvij −
∑
j∈P∪D

xvji = 0 ∀v ∈ V , i ∈ P ∪ D (3)

∑
i∈D

∑
j∈P∪D

xvij �1 v ∈ V (4)

∑
i∈S

∑
j∈S

xvij − M
∑
i∈S

∑
j∈(P∪D)\S

xvij �0 v ∈ V , S ⊆ P (5)

∑
i∈P∪D

∑
j∈P∪D

cijx
v
ij �H v ∈ V (6)

xvij �0 and integer ∀i, j ∈ P ∪ D,v ∈ V (7)

The objective (1) is to minimize the sum of vehicle travel dis-
tances. Constraints (2) ensure that all the orders must be satisfied
by the vehicles. Note that an order between one pair of locations
may be served either by various vehicles or by one vehicle for many
times. Constraints (3) specify the flow balance. If a vehicle enters
any location (i.e., a depot, a pickup location or a delivery location),
it has to leave this location. Constraints (4) state that a vehicle
starts from only one depot. Since constraints (3) ensure the balance

equation, constraints (4) also imply that each vehicle tour must start
and end at the same depot. Constraints (5), the so-called isolated
subtour elimination constraints, impose that the solution dose not
contain any illegal isolated subtour, where M is a `sufficient large'
positive number. Constraints (5) stipulate that each cut (P ∪ D\S, S)
defined by a vertex set S, is crossed by at least one transportation
lane. In this case, isolated subtour elimination constraints are dif-
ferent from famous subtour elimination constraints in the TSP [22]
and the basic VRP [23]. In the TSP and the VRP, the subtour elim-
ination constraints ensure that there is no subtour in the solution.
However, a subtour is legal if it is part of a vehicle tour in our
problem. Constraints (6) imply that the distance span of the tour is
respected.

Since the proposed heuristic algorithms for the MDCARPFL are
based on the graph theory, a detailed description of the MDCARPFL,
as the graph theoretic problem, is provided as follows. Given a com-
plete directed Euclidean graph G = (N,A) with vertex set N, arc set A,
and order set A′ ⊆ A, each a ∈ A′ represents one transportation order
and is associated with a non-negative load demand qa, which can
be transferred to the arc covered time �qa/Q� according to the full
truckload transport. Let h̄ represent the set of directed closed chains
in G. Each r ∈ h̄ satisfies r ∩ A′ ��, contains a depot, and covers arc
a ra times. Let lr denote the distance of chain r. xr is a 0–1 variable
indicating whether chain r belongs to the optimal solution or not.
The problem can be formulated as follows.

Objective:

min
∑
r∈h̄

lrxr (8)

Subject to:

∑
r∈h̄

raxr �
⌈
qa
Q

⌉
∀a ∈ A′ (9)

lr �H ∀r ∈ h̄ (10)

xr =
{
1, chain r is selected
0, else

∀r ∈ h̄ (11)

In the above formulation, objective (8) minimizes the total
distance of all the vehicle tours. Constraints (9) clarify that each
order must be served by one or more vehicles. Constraints (10)
require that the distance of a tour is no longer than the distance
span.

4. Lower bounds for the problem

As stated above, the MDCARPFL is a variant of the CARP and even
harder than the basic CARP. There is no efficient exact algorithm
for solving the MDCARPFL with large problem sizes. If there are
hundreds of the customer nodes, orders and lanes in the MDCARPFL,
it cannot be solved by commercial IP solver software (e.g., Cplex 10.0)
due to excessive memory requirements or excessive running time
requirements. Therefore, heuristic algorithms are used for tackling
the MDCARPFL. A tight lower bound is essential for evaluating the
quality of the heuristic solutions. In this section, two lower bounds,
LB1 and LB2, are proposed for the MDCARPFL. LB1 is proposed by
Gronalt et al. [24] for the pickup and delivery problem with full
truckloads. It is formulated as simple network flow LP, and can be
adopted for the MDCARPFL directly. However, LB1 ignores the travel
distances between the customer locations and the depots. Lifting
LB1 into LB2 is done by considering the travel distances between the
depots and customer locations. Therefore, LB2 always gives results
that are no worse than the results from LB1. The computational
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Fig. 2. The first visited node must be the pickup node.
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Fig. 3. The number of visits to each node is constrained.

experiments that we present in Section 6 show that in many cases
LB2 are clearly superior to LB1.

4.1. Lower bound LB1

Lower bound LB1 is formulated as follows. First constraints
(4)–(6) in the IP model formulated above are relaxed. Let xij indi-
cates total number of movements (loaded and empty) from location
i to location j. The revised objective function and the constraints
can be reformulated as the following LP.

Objective

min
∑
i∈P

∑
j∈P

cijxij (12)

Subject to:

xij �
⌈
qij
Q

⌉
∀i ∈ P+, j ∈ P− (13)

∑
j∈P

xij =
∑
j∈P

xji ∀i ∈ P (14)

xij �0 ∀i, j ∈ P (15)

The objective (12) minimizes the total vehicle travel distance,
both load and empty. Constraints (13) imply that all the transporta-
tion requirements must be met. Constraints (14) ensure that at each
location, the number of incoming vehicle movements equals the
number of outgoing vehicle movements. Constraints (15) ensure that
variable xij is non-negative.

4.2. Lower bound LB2

Before formulating LB2, some characteristics of the MDCARPFL
solution were analyzed. As shown in the left-hand part of Fig. 2, the
closed chain (A, B, C, D, E, A) represents a vehicle tour. Node B is
visited immediately after vehicle has started from depot A, but node
B is not a pickup node. The sum of the distances of arc (A, B) and arc
(B, C) is greater than the distance of arc (A, C). We can lift the original

chain into chain (A, C, D, E, A), as illustrated in the right-hand part
of Fig. 2. Therefore, it can be concluded that a vehicle must first visit
a pickup node after starting from the depot. Similarly, the last node
visited by a vehicle before returning to the depot must be a delivery
node.

If a pickup node is chosen as the first node after the vehicle has
started from the depot, the number of the tours passing this pickup
node must satisfy specific constraint. As shown in the left-hand part
of Fig. 3, there are two closed chains, each of them representing a
tour. The first one is chain1 (A, C, D, E, F, A) and the second is chain2
(B, C, D, G, H, B). In each chain, the vehicle first visits node C after
starting from the depot. But there is only one lane originating from
node C. After lane (C, D) has been covered by chain2, node C is `not' a
pickup node in chain1. Therefore, chain1 should be lifted into chain3
(A, D, E, F, A), as shown in the right-hand part of Fig. 3.

LB2 is formulated based on the following parameters and vari-
ables:

Vn the lower bound to the minimum number of vehicles needed to
serve all the orders.

xdij the number of tours in the solution, each of which satisfies that
location i is first visited after vehicle starting from depot d, and
location j is last visited before vehicle returning to depot d.

yij the number of trips from location i to location j.

The final IP formulation of LB2 can be written as:
Objective:

min
∑
d∈D

∑
i∈P+

∑
j∈P−

(cdi + cjd)x
d
ij +

∑
i∈P

∑
j∈P

cijyij (16)

Subject to:

∑
d∈D

∑
i∈P+

∑
j∈P−

xdij �Vn (17)

∑
d∈D

∑
j∈P−

xdij �
∑
j∈P−

⌈
qij
Q

⌉
∀i ∈ P+ (18)
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∑
d∈D

∑
i∈P+

xdij �
∑
i∈P+

⌈
qij
Q

⌉
∀j ∈ P− (19)

yij �
⌈
qij
Q

⌉
∀i ∈ P+, j ∈ P− (20)

∑
d∈D

∑
j∈P

xdij +
∑
j∈P

yji =
∑
d∈D

∑
j∈P

xdji +
∑
j∈P

yij ∀i ∈ P (21)

yij �0 and integer ∀i ∈ P, j ∈ P (22)

xdij �0 and integer ∀i ∈ P+, j ∈ P−, d ∈ D (23)

In objective (16), the first term represents the travel distances
between the depots and the customer locations; while the second
term implies the travel distances between the customer locations.
The ultimate objective is to minimize the sum of vehicle travel dis-
tances. Constraints (17) account for the availability of tours whereas
the number of connections between the depots and the customer
locations is bounded by a minimum. Constraints (18) and (19) are
proposed according to the characteristics of the solution that are
mentioned above. Constraints (20) ensure that all the orders
are served. Constraints (21) specify the flow balance in the network.

While tackling LB2 for the proposed problem, Vn can be computed
as Vn = �LB1/H�. Note that LB2 can be improved if a better value of
Vn can be found. Detailed discussion about the value of Vn will be
given in Section 6.2.

5. Solution approach

In this section, a two-phase heuristic method is introduced to
approach the MDCARPFL effectively and efficiently. In the first phase,
a set of cycles is created to cover all the lanes. In the second phase,
close chains are constructed, each of which corresponds to a vehicle
tour. Finally, a set of local search approaches is adopted to improve
the initial solution.

5.1. The first phase: cycle construction

Ergun et al. [1] propose a simple greedy algorithm, i.e., `generating
cycles first, choosing cycles second' approach, for the CCLCP. First,
the directed cycles of cardinality less than or equal to a prespecified
number k are generated. Second, in each iteration a cycle is chosen
that maximizes the `cover factor' of a cycle, i.e., the ratio of the
distance of the lanes covered by the cycle and the total distance of the
cycle. The main differences between this approach and our problem
lie in two main facts. As in the CCLCP, there is no restriction on the
maximum distance of a cycle, but the cardinality of a cycle must
not exceed a prespecified number. Furthermore, the CCLCP assumes
one truckload demand for each order, whereas our problem allows
each order demand to be any integer multiple of full truckloads.
Therefore, we extend this approach with respect to the two points.
First, the distance span constraint is checked when a cycle is chosen.
The infeasible cycle is rejected. In addition, the algorithm records the
`covering number' CN for each order, when a cycle is chosen to cover
the orders. For each order a with load demand qa, its initial covering
number CNa equals �qa/Q�. When order a is covered by a cycle in
the iteration, CNa decreases by 1. If CNa is greater than 0, order a
is valid and needs to be covered by cycles. Otherwise, it is invalid.

The improved greedy algorithm can be presented as
follows.

First phase Algorithm: cycle construction

1: Input parameter k
2: generate cycle set C, which represents the set of all directed cycles

in graph G of cardinality less than or equal to k
3: U : =A′

4: for each ∈ A′

5: CNa = �qa/Q�
6: end for
7: Cchoice = ∅, where Cchoice is the set of cycles chosen to cover the

orders
8: repeat choose one cycle c ∈ C
9: calculate the total distance of c: lc
10: join cycle c to the depot which is closest to cycle c, to generate

a tour.
11: improve the tour by applying the refining procedure described

in Section 5.3.1. let tc denote the distance of the tour
12: if tc � H then
13: calculate the `cover factor' of the cycles. The cover factor of

cycle c is: �c = ∑
e∈c∩Ule/lc, where le is the distance of arc e

14: else
15: remove cycle c from C
16: end if
17: until all ∈ C have been chosen
18: repeat choose cmax ∈ C, which has the maximal cover factor
19: Cchoice : =Cchoice ∪ cmax

20: repeat choose an arc a ∈ cmax ∩ U
21: CNa = CNa − 1
22: if CNa= = 0 then
23: U : =U\a
24: end if
25: until all arcs in max ∩ U have been chosen
26: repeat choose cycle c ∈ C
27: calculate and update the cover factor �c
28: until all ∈ C have been chosen
29: until =∅
30: output Cchoice

Note that the more cycles generated, the better the quality of
the solution that may be obtained. However, with the increase of
the cycle cardinality, the number of cycles becomes prohibitively
large very quickly, especially for large-scale instances. In such sit-
uations, it is dramatically time consuming to generate all possible
cycles. Therefore, we have to make a trade-off between generat-
ing cycles and improving solution quality. Ergun et al. [1] find that
the greedy algorithm solution is close to the optimal solution of the
CCLCP when cycle cardinality equals 5, but the gap is unknown for
the DCLCP. In our algorithm, we also try to restrict the cardinality of
a cycle to be at most 5.

Another important parameter, the maximum number of reposi-
tioning arcs in a cycle, should be considered in the algorithm. We
ignore this constraint in order to get more accurate solutions for the
problem, i.e., the maximum number of repositioning arcs in a cycle
is at most 2.

5.2. The second phase: closed chain construction

In the second phase, a set of closed chains is constructed to
cover the cycles. Each closed chain corresponds to a vehicle tour.
Note that the closed chains are generated based on the cycles rather
than individual arcs. This may lead to suboptimal solutions. How-
ever, it has the advantage of retaining the structure of the cycles and
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Fig. 4. The closed chain constructing procedure.
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Fig. 5. The example of repositioning arcs merging.

reducing the size of the problem. The closed chain construction al-
gorithm used in this paper is described as follows.

First, when all the cycles are unassigned (if a cycle is connected
to a depot, it is called assigned), we calculate the distances between
the cycles and the depots. The distance between a cycle and a depot
is the shortest distance between the cycle's nodes and the depot.
The first closed chain is constructed by adding two arcs between the
closest depot and cycle. Then, the distances between the depots and
unassigned cycles, and the distances between the assigned cycles
and unassigned ones are calculated. The distance between two cy-
cles equals the shortest distance between two nodes, each of which
belongs to one cycle. An unassigned cycle is assigned to an existing
chain, if the minimal distance is between them and the distance of
the new chain is no more than vehicle travel distance span. Other-
wise, if the minimal distance is between a depot and an unassigned
cycle, a new chain is generated, i.e., two arcs are added to con-
nected them together. The procedure is repeated until all cycles are
assigned.

To describe the chain construction procedure more clearly, an ex-
ample with two depots and three cycles is considered, as illustrated
in Fig. 4. When all the cycles are unassigned (as shown in the top part
of Fig. 4), the shortest distance between the depots and the cycles
is (depot1, cycle1). A new chain is created, which consists of cycle1,
depot1, arc1 and arc2 (as shown in the middle part of Fig. 4). Then,
the shortest distance between the depots and unassigned cycles is
(depot2, dycle3). The shortest distance between the assigned and
unassigned cycles is (cycle1, cycle2). Since the former is less than
the latter, arc3 and arc4 are added between cycle1 and cycle2. And
last, the second chain is generated to cover cycle3, which is com-
posed of cycle3, arc5, arc6 and depot2 (as shown in the bottom part
of Fig. 4).

5.3. Improvement strategies

In general, the quality of the solutions obtained with this ap-
proach is good, but in most cases can be further improved.

5.3.1. Repositioning arcs merge
We find that two repositioning arcs may be connected together

in the solution obtained by the initial solution step. Because of the
triangle inequality, such two repositioning arcs should be replaced
by one shorter repositioning arc. An example of repositioning arcs
merge is shown in Fig. 5. Cycle1 and cycle2 are generated in the first
phase of the heuristic, where arc2 and arc3 are the repositioning arcs
in the cycles. Arc1 and arc4 are added in the second phase. In the
merge procedure, arc1 and arc2 are deleted and replaced by arc5.
Similarly, arc3 and arc4 are replaced by arc6.

5.3.2. Improved methods based on local search
Some classical local search methods are developed for VRP and

ARP, which modify the heuristic initial solution and get a better re-
sult. Most iterative improvement methods applied to VRP and ARP
are edge exchanging [13–15,25]. For example, the famous �-opt
heuristic for VRP removes � edges from the tour, and reconnects the
� remaining segments in all possible ways. The procedure stops at
a local minimum when no further improvements can be obtained.
Since in the proposed heuristic the basic components of the chains
are cycles, it is a natural idea to obtain neighboring solutions by
swapping or shifting cycles. Since the number of the cycles chosen
in the first phase is much less than the number of arcs in the solu-
tion, dealing with the cycles is more quickly than dealing with the
arcs. Two types of neighborhoods (i.e., intra-route and inter-route
cycle neighborhoods) are adopted to improve the initial solutions.
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The first local search procedures operate on each vehicle tour
separately. We try to exchange the positions of two cycles within
one chain, and take a cycle from its current position and insert it into
another position of the chain. The whole neighborhood of an initial
solution is explored. Infeasible or inferior solutions are discarded
in the evaluation. While one better solution is found, it is adopted
as the new seed solution for repeating the search procedure. The
procedure stops when no additional improvements can be obtained.
Fig. 6 illustrates an example of moving one cycle within a chain.
Before the improvement operation, the cycles' sequence is cycle1,
cycle2 and cycle3. After the rearrangement, the cycles' sequence is
cycle1, cycle3 and cycle2.

The inter-route improvement methods simultaneously operate
on two vehicle tours. We move one cycle from its current chain
and insert it to any possible positions in another chain, and swap
two cycles between two chains. The search process terminates when
no improved solution can be obtained. Fig. 7 shows an example of
shifting a cycle from chain1 to chain2. Before the shifting operation,
chain1 consists of 9 nodes, i.e., depots 1 and nodes s11–18. Chain2
consists of 5 nodes, i.e., depot2 and nodes s21–24. After the shifting
operation, nodes s14–16 are moved from chain1 to chain2.

6. Computational experiments

6.1. Experimental data

The proposed heuristic is assessed on a number of test problems
in complete Euclidean graphs to analyze its performance. Nine pa-
rameters are considered while the problems are created:

(1) The region where customer nodes are located
(2) The number of customer nodes
(3) The number of depots
(4) The number of orders
(5) The number of lanes
(6) The spread types of customer nodes

(7) The distance span of vehicle tour
(8) The percentage p of `long orders'
(9) The distance between depot and its closest customer node

Each test problem is generated over a rectangle region, where
the customer nodes are located. The straight-line distance is adopted
as the cost and distance between two locations. The test problems
are divided into two sets with respect to the geographical data of
the customer nodes. For the first set problems, i.e., problems C1 to
C6, clusters are introduced to represent metropolitan areas or other
geographical clusters of points. The clusters are randomly located in
the rectangle region, each of which is a circle with radius equals 1.
All the customer nodes are located in the clusters equally. For the
second set problems, i.e., problems U1 to U3, the customer nodes
are randomly located in the rectangle region.

For each problem, order set and lane set are created in three steps.
First, the order set is created. Each order is specified by a pickup
node and a delivery node, both chosen from the customer nodes.
For first set problems, an order is called `long order', if its pickup
node and delivery node belong to various clusters. Otherwise, it is
called `short order'. We use a long percentage p, i.e., randomly select
p% orders from the set of long orders and the rest from the set of
short orders. For second set problems, each order is specified by
two randomly chosen customer nodes. Second, we let each order's
truckload shipment equals 1. Now the number of orders equals the
number of lanes. And last, we randomly choose an order and increase
its truckload shipment by 1, until the number of lanes reaches the
stopping condition.

Concerning the depot locations, the test problems are grouped
into two categories. For problems C5, C6 and U3, all the depots are
outside the rectangle and are far from the customer nodes. The dis-
tance between the depot and its closest customer node is 20. For
the rest problems, the depots are located inside the rectangle and
are close to the customer nodes. The distance between each depot
and its closest customer node is 5. Problems C2 and C5 comprise
the same structure of orders and lanes, but different depot locations.
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Table 1
Basic input parameters of nine sets of test problems.

Problem Node Depot Order Lane Cluster L–P Min-D-N Region Hmin

C1 100 3 50 100 4 80% 5 30×30 67.1
C2 200 4 150 200 8 50% 5 40×40 127.6
C3 200 4 300 500 8 50% 5 40×40 127.9
C4 500 6 800 1000 25 80% 5 90×90 185.7
C5 200 4 150 200 8 50% 20 40×40 166.2
C6 500 6 800 1000 25 80% 20 90×90 231.2
U1 200 3 100 200 − − 5 10×20 55.3
U2 200 3 300 500 − − 5 10×20 56.6
U3 200 3 300 500 − − 10 10×20 78.9

Table 2
Computational results for the instances in problem C1.

H Cycles Chains L1 T1 (s) L2 T2 (s) LB Gap (%)

1000 42 3 2556.1 0.00 2498.7 0.00 2480.2 0.75
800 42 4 2568.5 0.08 2505.9 0.00 2488.3 0.71
600 42 7 2578.6 0.11 2515.8 0.06 2496.5 0.77
400 42 7 2598.9 0.12 2541.2 0.07 2513.4 1.11
300 42 10 2628.8 0.17 2558.5 0.08 2530.7 1.10
200 42 15 2675.4 0.17 2611.6 0.13 2565.8 1.79
150 42 21 2726.4 0.22 2660.8 0.09 2610.9 1.91
100 42 38 2890.9 0.31 2827.0 0.09 2697.2 4.81
80 45 44 2940.7 0.37 2883.0 0.09 2767.4 4.18
70 56 56 3301.8 0.20 3237.1 0.10 2828.8 14.43

Average 0.18 0.07 3.15

The same principles apply to C4 and C6, U2 and U3.
The test problem generation is detailed in Table 1. Columns 1–9

indicate the test problem, the number of customer nodes, the number
of depots, the number of orders, the number of lanes, the number of
clusters, the percentage of `long orders' (L–P), the distance between
the depot to its closest customer nodes (Min-D-N) and the rectangle
region, respectively.

Ten instances are generated within each problem. All the in-
stances within a problem have the same underlying graph, i.e., the
structure of orders, lanes and depots. The only difference comes from
the distance span H. For notational convenience, an instance within
a problem is named as the problem's label with its distance span.
For example, an instance in problem C1 with distance span 100 is
denoted by C1–100. Note that for each problem, distance span must
be no less than a minimal value Hmin, or there is no feasible solution
to the problem. The minimal distance span Hmin can be found as fol-
lows. The minimal chain that covers a lane and passes one depot is
a triangle, whose vertices are the depot node, the pickup node and
delivery node of the lane. For each problem, we first compare the
triangles determined by one lane with different depots, and get the
`smallest triangle' determined by this lane. Then, among the set of
`smallest triangles' determined by all the lanes, the distance of the
largest one is Hmin. In Table 1, the last column presents the minimal
distance span Hmin for each problem.

6.2. Results analysis

The algorithms were implemented in ANSI C and tested on an
Intel P4 3GHz PC with 2GB memory, under Windows XP. The com-
putational results are presented in Tables 2–10.

Tables 2–7 show results obtained by the proposed algorithms
and LB2s for 60 test instances. Column 1 identifies the travel dis-
tance span H. Columns 2 and 3 display the number of cycles and
the number of chains generated in the first and the second phase of
the heuristic, respectively. Columns 4 and 5 reflect the solution cost
provided by the two-phase heuristic and the corresponding running

Table 3
Computational results for the instances in problem C2.

H Cycles Chains L1 T1 (s) L2 T2 (s) LB Gap (%)

3000 84 3 7182.9 0.56 7031.2 0.75 6909.7 1.76
2000 84 4 7198.1 0.69 7044.0 1.90 6914.4 1.87
1000 84 6 7310.6 0.81 7111.3 5.57 6930.2 2.61
800 84 10 7376.7 0.82 7150.6 2.05 6942.8 2.99
600 84 13 7385.4 1.02 7152.9 7.94 6967.5 3.67
400 84 20 7585.4 1.41 7326.3 0.72 7028.7 4.23
300 84 27 7688.5 1.78 7422.1 4.52 7092.3 4.65
200 84 47 8128.2 2.63 7725.5 2.99 7242.1 6.67
150 90 63 8319.2 2.69 8051.3 4.63 7423.0 8.46
130 94 74 8928.2 3.52 8609.1 4.64 7557.3 13.92

Average 1.59 3.57 5.08

Table 4
Computational results for the instances in problem C3.

H Cycles Chains L1 T1 (s) L2 T2 (s) LB Gap (%)

3000 175 6 17032.9 9.36 16650.2 9.21 16497.1 0.93
2000 175 9 17106.3 9.69 16742.3 19.20 16501.8 1.46
1000 175 17 17239.1 10.86 16848.5 17.53 16546.3 1.83
800 175 22 17336.5 11.53 16856.5 46.17 16575.1 1.70
600 175 30 17500.8 13.38 17008.5 64.22 16633.1 2.26
400 175 46 17795.3 15.07 17251.2 32.72 16758.5 2.94
300 175 64 18135.5 18.11 17436.0 61.82 16897.8 3.19
200 175 106 18943.4 25.01 18097.0 25.13 17238.7 4.98
150 185 150 20001.4 26.20 19124.7 40.89 17648.0 8.37
130 185 173 20329.0 20.93 19675.8 26.47 17950.6 9.61

Average 16.01 34.34 3.73

Table 5
Computational results for the instances in problem C4.

H Cycles Chains L1 T1 (s) L2 T2 (s) LB Gap (%)

5000 369 10 46123.9 47.47 − − 44135.5 4.51
4000 369 13 46227.6 48.21 − − 44142.3 4.72
3000 369 16 46271.2 55.42 − − 44151.1 4.80
2000 369 24 46386.5 49.71 − − 44184.9 4.98
1000 369 47 47020.2 53.53 − − 44430.4 5.83
800 369 60 47256.9 57.09 − − 44570.2 6.03
600 369 81 47711.3 48.95 − − 44822.1 6.45
400 369 130 48728.9 50.37 − − 45346.3 7.46
300 369 216 50626.2 59.29 − − 46758.6 8.27
200 369 298 53621.6 71.59 − − 47095.7 13.86

Average 54.16 6.69

Table 6
Computational results for the instances in problem U1.

H Cycles Chains L1 T1 (s) L2 T2 (s) LB Gap (%)

2000 81 1 1968.6 0.32 1902.7 0.02 1764.3 7.84
1000 81 2 2004.2 0.33 1909.0 1.04 1771.8 7.74
800 81 3 2039.6 0.41 1917.1 1.14 1779.4 7.74
600 81 4 2046.5 0.41 1925.1 2.51 1779.4 8.19
400 81 6 2075.9 0.50 1942.9 4.21 1796.8 8.13
300 81 8 2118.3 0.66 1972.7 3.03 1818.2 8.50
200 81 11 2153.6 0.81 2011.2 3.35 1833.5 9.69
100 81 25 2329.8 1.39 2184.8 4.91 1933.5 13.00
80 81 33 2407.9 1.81 2229.3 8.56 1999.5 11.49
60 81 52 2573.1 2.62 2428.2 2.38 2104.7 15.37

Average 0.93 3.12 9.77
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Table 7
Computational results for the instances in problem U2.

H Cycles Chains L1 T1 (s) L2 T2 (s) LB Gap (%)

3000 178 2 4753.4 8.83 4646.2 5.94 4433.5 4.80
2000 178 3 4797.4 7.32 4653.4 21.56 4439.5 4.82
1000 178 5 4832.0 9.12 4665.7 67.42 4451.5 4.81
800 178 6 4852.5 10.48 4671.7 61.20 4457.5 4.81
600 178 10 5009.5 9.11 4694.6 112.00 4469.5 5.04
400 178 21 5113.6 13.62 4722.3 239.90 4497.9 4.99
200 178 48 5431.9 36.55 4847.6 302.20 4583.9 5.75
100 178 61 5661.4 55.87 5180.4 433.30 4789.5 8.16
80 178 78 5758.9 64.60 5411.5 290.75 4933.8 9.68
60 178 125 6233.3 106.87 5816.2 239.55 5196.6 11.92

Average 32.24 177.38 6.48

Table 8
Computational results for the instances in problem C5.

H L2 LB1 LB2 GAP1 (%) GAP2 (%)

3000 7150.3 6903.8 6955.5 3.57 2.80
2000 7189.6 6903.8 6975.7 4.14 3.07
1000 7364.1 6903.8 7059.2 6.67 4.32
800 7458.4 6903.8 7117.2 8.03 4.79
600 7607.8 6903.8 7215.8 10.20 5.43
400 7990.7 6903.8 7496.4 15.74 6.59
300 8578.8 6903.8 7924.26 24.27 8.26
200 9639.5 6903.8 8409.7 39.63 14.62
180 10250.8 6903.8 8911.3 48.48 15.03
170 10691.6 6903.8 9248.2 54.87 15.61

Average 21.56 8.05

Table 9
Computational results for the instances in problem C6.

H L2 LB1 LB2 GAP1 (%) GAP2 (%)

5000 45765.7 44127.7 44446.5 3.71 2.97
3000 46443.2 44127.7 44689.5 5.25 3.92
2000 47251.3 44127.7 45047.6 7.08 4.89
1000 48637.4 44127.7 46160.2 10.22 5.37
800 49878.4 44127.7 46752.0 13.03 6.69
600 51008.5 44127.7 47741.4 15.59 6.84
500 52238.9 44127.7 48852.2 18.38 6.93
400 53427.6 44127.7 49830.0 21.07 7.22
300 56923.1 44127.7 52181.9 29.00 9.09
260 59294.8 44127.7 53890.7 34.37 10.03

Average 15.77 6.40

Table 10
Computational results for the instances in problem U3.

H L2 LB1 LB2 GAP1 (%) GAP2 (%)

3000 4674.2 4421.9 4459.5 5.70 4.81
2000 4694.3 4421.9 4479.4 6.16 4.80
1000 4734.2 4421.9 4519.4 7.06 4.75
800 4774.3 4421.9 4539.4 7.97 5.17
600 4816.8 4421.9 4579.4 8.93 5.18
400 5082.3 4421.9 4659.6 14.93 9.07
300 5244.6 4421.9 4769.3 18.60 9.96
200 5530.7 4421.9 4908.5 25.07 12.68
100 6461.0 4421.9 5476.0 46.11 17.99
80 7079.0 4421.9 5910.1 60.09 19.78

Average 20.06 9.42

time in seconds. Columns 6 and 7 show the same information of the
improvement strategies. Column 8 indicates the lower bound LB2
for each instance. Column 9 shows the percentage gap between LB2
and final solution cost. The last line gives the average running time
of two-phase heuristic algorithm and improvement strategies, and
average percentage deviation to LB2.

Note thatwhen computing the lower bound LB2 for a test instance
from formulations (16)–(23), we may find a better value of Vn than
�LB1/H� during the computational experiments. For example, given
a set of instances (n1, . . . ,n10), which is generated based on one prob-
lem and the only difference comes from the vehicle travel distance
spans: (h1, . . . ,h10). Without loss of generality, let h1 > h2 > · · · >
h10. Lower bound LB1 for these test instances is the result of for-
mulations (12)–(15), i.e., LB1. First, we calculate LB2 for test in-
stance n1 from formulations (16)–(23) by setting Vn1=�LB1/h1�. Then,
when computing LB2 for n2, we compare the values of �LB1/h2� and
�LB2n1/h2�. If �LB2n1/h2� is larger than �LB1/h2�, it is adopted as the
value of Vn2, and is input into formulations (12)–(15) to get LB2n2.
The procedure is repeated until LB2s for 10 test instance n1, . . . ,n10
are gotten.

As shown in Tables 2–7, we can find that the solution costs ob-
tained by the proposed heuristic are close to the lower bounds. For
some test instances, such as C1-1000 and C3-3000, the gaps be-
tween the solution costs and LB2 are less than 1%. For all 60 test
instances, the largest percentage gap between the solution cost and
LB2 is 15.37%, and the average percentage gap is 5.82%.

Tables 2–7 also show that for various instances generated within
one problem, the number of cycles, the number of chains and the pro-
posed heuristic results increase simultaneously, with the decrease
of the distance span. The processing time of local search procedure
increases with the increase of lanes. When the number of lanes
reaches 1000, it takes too long to execute the local search. Therefore,
Table 5 gives the solutions without local search improvement, which
are adopted as the final results. Similarly, for the test instanceswithin
problem C6, the solutions without local search improvement are
adopted as the final results.

Solution costs and two lower bounds for problems C5, C6 and U3
are given in Tables 8–10. In these tables, columns 1–4 record the
distance span, solution cost (L2), LB1 and LB2. The last two columns
identify the percentage gaps between the solution cost and two
lower bounds.

First, we try to compare the existing lower bound LB1 with new
lower bound LB2 in Tables 8–10. It is depicted that for each test in-
stance GAP2 is always smaller than GAP1. For each problem, GAP1
and GAP2 both increase with the decrease in distance span. However,
GAP1 increases much more rapidly than GAP2. We choose problem
C5 as an example. When we decrease the distance span from 3000
to 170, GAP1 increases from 3.57% to 54.87%, whereas GAP2 only
increases from 2.80% to 15.61%. It indicates that LB2 is more promis-
ing than LB1, especially for the test instance with tight vehicle travel
distance span. This conclusion can be seen clearly in Fig. 8, where
two curves represent GAP1 and GAP2 for 10 test instances within
problem C5.

Furthermore, we see that GAP2 keeps acceptable when the depot
locations are changed. As stated above, problems C2 and C5 com-
prise the same basic structure. The only difference comes from the
depot locations. The same principles apply to problems C4 and C6,
problems U2 and U3. As shown in Tables 3, 5, and 7–10, the values
of GAP2 increase when the depots are far away from the customer
nodes. However, the increase in GAP2 is not prominent. For prob-
lems C2, C4 and U2 the average gaps between the heuristic solution
costs and LB2 are 5.08%, 6.69% and 6.48%, respectively. When the
depot locations are changed (i.e., the depots are departing from the
customer locations), the average gaps for problems C5, C6 and U3
are 8.05%, 6.40% and 9.42%, respectively. The results show that the
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Fig. 8. The percentage deviations of the heuristic solution values over LB1 and LB2 for problem C5.

proposed method yields robust results which do not heavily depend
on the depot locations.

7. Conclusions and future research

This paper discusses an important problem, i.e., the multi-depot
capacitated arc routing problem with full truckloads, which is an
extension of the CARP with wide applications in carrier collabora-
tion. An exact formulation is presented. A set of heuristics is put
forward to solve this problem of a realistic size. To validate the pro-
posed heuristic, two lower bounds are designed. The algorithm is
tested on different types of problems. The results demonstrate that
the proposed heuristic provides high-quality solutions in a reason-
able computing time. The impact of vehicle distance span and depot
locations on the solution quality is also explored. In conclusion, the
proposed algorithms can provide robust solutions.

For future research, attentions can be focused on the extension
of MDCARPFL, MDCARPFL with time windows. Properly incorporat-
ing timing considerations in MDCARPFL is of critical importance to
practical viability. In the MDCARPFL with time windows, the service
at each order must start and end within an associated time window.
It is interesting and challenging to design the algorithm for obtain-
ing a high quality solution to the MDCARPFL with time windows in
an acceptable time.
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