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Abstract
A multiobjective combinatorial optimization (MOCO) formulation for the

following location-routing problem in healthcare management is given: For a
mobile healthcare facility, a closed tour with stops selected from a given set
of population nodes has to be found. Tours are evaluated according to three
criteria: (i) an economic efficiency criterion related to the tour length, (ii)
the criterion of average distances to the nearest tour stops corresponding to
p-median location problem formulations, and (iii) a coverage criterion mea-
suring the percentage of the population unable to reach a tour stop within a
predefined maximum distance. Three algorithms to compute approximations
to the set of Pareto-efficient solutions of the described MOCO problem are
developed. The first uses the P-ACO technique, and the second and the third
use the VEGA and the MOGA variant of multiobjective genetic algorithms,
respectively. Computational experiments for the Thiès region in Senegal were
carried out to evaluate the three approaches on real-world problem instances.

Keywords: Facility location, metaheuristics, mobile healthcare, multicri-
teria decision making, routing.

1 Introduction

Developing countries frequently face the dilemma of very restrictive budget limita-
tions for healthcare expenditures and a growing population. In such a situation,
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the provision of cost-effective healthcare facilities becomes particularly important.
Distance proved to be one of the most influencing factors for the utilization of health-
care facilities (see [36], [45], [7], [47]). In developed countries and mainly in urban
areas, distance rather influences the decision on which kind of medical services (e.g.,
a medical doctor or a hospital) the patients use [34], whereas in rural areas of devel-
oping countries, distance is the decisive factor whether or not to use medical services
at all [38]. Therefore, in these regions, the provision of medical facilities close to the
residences of the people becomes crucial for appropriate medical supply.

As a possible way to provide cost-effective primary healthcare under the very
restrictive budget limitations of a developing country (cf. Flessa [18]), some gov-
ernments and institutions have supplemented hospitals and stationary dispensaries
with mobile healthcare facilities (see Gilson [23], Foord [20], Fox-Rushby [21], Mackle
and Giles [33], Ruggiero and Gloyd [43], Dyer [17], or Hodgson et al. [28]). One of
the most salient purposes of such mobile facilities lies in the extension of access of
people to health services. Achieving the same accessibility effect by building a larger
number of spatially fixed healthcare units would increase the costs for equipment
and staff considerably, which often cannot be afforded. Small mobile units, on the
other hand, are able to travel to distinct places at distinct times and to offer service
for the people in a certain radius.

Obviously, mobile units cannot make all the services available a hospital can offer.
Thus, they can be seen as supplemental to other medical services, satisfying either
the most urgent needs, or providing services of certain specialized medical divisions
like dental treatment [3], the expertise of eye specialists [43], or CT scanners [46]. Of
course, in the situation of a developing country, which is considered in this article,
the medical equipment will usually not meet very advanced standards [48], but basic
medical services can be offered at a high quality level.

Already for fixed facilities, the question where they should be built and how they
should be staffed is a difficult planning problem. Several types of location-allocation
models aim at a decision support for this question based on quantative data (see,
e.g., Berghmans et al. [1], Hindle and Ngwube [27], Oppong [39], Doherty et al. [14],
Mehrez et al. [35], Chu and Chu [5], Rahman and Smith [41], Goldstein et al. [24]
or Galvao et al. [22]). In the case of one or more mobile healthcare facilities, the
planning problem gets even more complex since both tours and stops on tours have
to be selected in a way that satisfies different criteria, cost-effectiveness (influenced
by travel distances) being one of them, accessibility and coverage being others.

Hodgson et al. [28] and Hachicha et al. [26] have addressed the tour planning
problem for one or more mobile facilities in the Suhum district in Ghana. In their
optimization model, tours and stops on tours are computed from geographical and
demographic data both for the road conditions in the dry and in the rainy season. As
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a coverage constraint, the authors demand that each population center (settlement)
that can, in principle, be reached within a given maximum walking distance (the
cases of three and of eight kilometers are considered) is actually provided by a tour
stop within this distance.

In the literature, the considered distance limits for such coverage constraints vary
significantly depending on the concrete situation. Berghmans et al. [1], for instance,
suggested a maximum walking distance of 750 meters to the nearest health center,
whereas Patel [40] suggested in his model for the rural region Dharampour in India a
maximum walking time of 1.5 hours. In any case, compared to standards in Europe
or the USA, where a maximum walking or driving time of 15 minutes for more than
90 percent of the population is strived for, the limits for rural areas of developing
countries must necessarily be set to a far less ambitious level.

In the present article, we extend the model in [28] and [26] to a multiobjective
problem formulation: Whereas in the indicated articles, an optimization problem
with tour length as the objective function is solved, we do not judge the quality of
a tour plan only based on a single criterion, but rather take account of the multi-
criteria nature of the task (see below) and intend to provide the political decision
maker with a computer-based decision support system (DSS) which outputs several
candidate solutions for final choice. They are visualized and can be evaluated and
discussed on a political level. So, the final decision remains up to the human decision
maker, but the system assists him/her in coping with the complexity of the problem.
Literature examples show that decision makers in the governmental departments
seldom transformed the results of healthcare location/allocation models unchanged
into concrete policies (cf., e.g., [2], [10], [25], [35]). Already for this reason, it seems
advisable to integrate the decision makers as early as possible into the solution
procedure.

In the case of our problem, at least the following three criteria should be taken
into consideration (possibly even more): (1) Effectiveness of workforce employment,
measured by the ratio between medical working time and total working time in-
cluding travel time and facility setup time. (2) Average accessibility, measured by a
low average time required by the inhabitants of the considered region to reach the
nearest tour stop or the nearest stationary facility. (3) Coverage, expressed by the
percentage of inhabitants living within a given maximum walking distance to a tour
stop or stationary facility. In some sense, this definition of coverage aims at the
aspect of equity (or fairness) of accessibility: As far as possible, no citizen should
be excluded at all from medical services by an extraordinary distance to the nearest
facility.

Let us mention that our criterion (1), effectiveness, will turn out as closely related
to the tour length criterion which is the objective in the well-known classical routing
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problems TSP and VRP. The two other criteria (2) and (3), on the other hand, refer
to the location aspect of the problem: Optimizing only the average accessibility
(2) would amount to solving a p-Median Problem (see, e.g., ReVelle and Swain
[42]), while optimizing only the coverage (3) would mean that a Maximal Covering
Location Problem (MCLP), as formulated by Church and ReVelle [6], is solved.

There are tradeoffs between the three criteria above: Evidently, effectiveness can
be increased by reducing the number of stops, leading to a reduced average accessi-
bility or coverage. Vice versa, average accessibility and coverage can be increased by
increasing the number of stops, which reduces effectiveness. Also average accessibil-
ity and coverage contradict to some extent: A low overall average walking distance
can be achieved by leading the tour mainly through areas with dense population
and planning a large number of stops there, which, however, effects an inequitable
solution with comparably low coverage. Vice versa, to achieve high coverage, tour
stops must be spread broadly over the whole region, which increases distances in
those parts that “count most” from the viewpoint of average distances, namely the
densely populated areas.

A model for the problem under consideration will be presented in Section 2.
Section 3 presents solution algorithms. In Section 4, we shall study the application
of these algorithms to the tour planning problem for the Thiès region in Senegal.
Section 5 contains concluding remarks.

2 The Model

Let us restrict ourselves to the case of one single mobile facility (MF). Moreover,
we assume here that medical supply for the considered region is to be delivered
exclusively by the MF, without support by fixed hospitals or dispensaries. This is,
of course, a simplification that usually does not represent the real situation, not
even in a country with low healthcare standards. Also in the region of Senegal
to which our computational example in section 4 refers, fixed healthcare facilities
exist. Nevertheless, for the sake of a better isolation of the methodological questions
raised by the considered location-routing problem, it is convenient to start with the
mentioned assumption. The extension of the model to the more realistic situation
of combined stationary and mobile supply is discussed in section 5; in our opinion,
this extension is rather straightforward.

We use the following formal model description to represent the problem:
As in [28], a problem instance is based on a graph G = (W,E), where the nodes

vi ∈ W are settlements (population centers of any kind, from cities to very small
villages), and the edges el ∈ E are traffic links (roads or paths) between these

4



settlements. An edge el can be represented as the pair (vi, vj) of the two incident
nodes. In each settlement vi ∈ W , there lives a population of pi inhabitants. The
sum of the values pi is the total number of inhabitants, N .

A subset V ⊆ W contains the potential stops of the MF. Without loss of gener-
ality, the nodes vi ∈ W can be labelled in such a way that the nodes in V get the
lowest indices: V = {v1, . . . , v|V |} and W = {v1, . . . , v|W |} with |V | and |W | ≥ |V |
denoting the number of elements in V and W , respectively. The shortest distance
between two nodes vi ∈ W and vj ∈ W is dij kilometers, the shortest driving time
of the MF between two nodes vi ∈ V and vj ∈ V is cij hours. (Hodgson et al. [28]
comprise these two types of variables to a single variable. With respect to different
quality types of roads, however, it makes sense to consider them separately from
each other.)

The time interval during which the MF performs its (closed) tour is called a
period. The number of days of a period is considered as a given constant fixed in
advance. It forms an aspect of the quality of service and should not be fixed at a
too high value, otherwise continuity of medical treatment would not be guaranteed.

The decision variable is the chosen (closed) tour,

π = (π(1), . . . , π(k)),

where π(j) is the index of the jth visited node (vπ(j) ∈ V ; j = 1, . . . , k), and after
visiting node π(k), the MF returns to the start node π(1). This start node is a
fixed given depot; it is always possible to choose the indices of the nodes in such a
way that π(1) = 1. The reader should be aware that, contrary to the well-known
travelling salesperson problem (TSP) or to most types of vehicle routing problems
(VRP), not every node vi ∈ V needs to be part of the tour.

The number of stops on the tour is k = k(π). Thus, the total driving time during
the tour is given by

t(π) =
k−1∑

j=1

cπ(j),π(j+1) + cπ(k),1.

The following constant parameters are used as input data:

• T : total working time of a member of the MF personnel during the period
(expressed in hours),

• µ: time for the setup of the MF at a stop per member of the MF personnel
(expressed in hours),

• M : upper bound for an acceptable walking distance to the nearest tour stop
(in kilometers), as defined by the political decision maker.
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The three objective criteria are formulated in terms of costs in the way described
below.

Objective (1): Effectiveness of workforce employment

The ineffectiveness of the MF personnel employment is measured by the ratio
of medically non-productive time (the required time for the setup of the MF at a
certain location, plus the driving time between locations) to the overall working
time,

µ k(π) + t(π)

T
. (1)

Therefore, our first objective is a weighted average of number of stops and tour
length: With γ1 = µ/T and γ2 = 1/T ,

Z1 = γ1 k(π) + γ2 t(π). (2)

It is also possible to interpret Z1 exclusively as a tour length: By setting c′ij =
(cij + µ)/T , one obtains Z1 as the tour length with respect to distances c′ij.

Both the nominator and the denominator of (1) are expressed in hours, such that
Z1 becomes a dimensionless number (between 0 and 1).

Objective (2): Average accessibility

Average accessibility can be measured by computing the average distance a mem-
ber of the population has to walk in order to reach the nearest stop of the MF. (Ev-
idently, this is a criterion which corresponds to the classical p-median formulation
of location problems.) Thus, we set

Z2 =
1

N

∑

vi∈W

pi d(i, π), (3)

where
d(i, π) = min{di,π(j) | j = 1, . . . , k}

is the minimum distance of vi to a node contained in the tour π.
Objective function value Z2 is expressed in kilometers as distance units.

Objective (3): Coverage

To measure the aspect of coverage, we introduce as a third objective function
the share of the population living in a distance larger than the pre-defined value M
to the nearest tour stop. Expressed in formulas:

Z3 =
1

N

∑

vi∈W (M,π)

pi, (4)
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where W (M,π) is the set of all nodes vi ∈ W with d(i, π) > M .
Objective function value Z3 is a ratio between numbers of inhabitants and hence

a dimensionless number (between 0 an 1).

We can give a three-objective integer linear programming (ILP) formulation of
our problem (2) – (4): Let us re-encode the combinatorial decision variable π by
introducing the integer variables

xij =

{
1, if vj is immediate successor of vi on tour π,
0, otherwise,

for vi, vj ∈ V . Moreover, we introduce the additional integer variables

yi =

{
1, if vi is selected as a tour stop (i.e., element of π),
0, otherwise,

for vi ∈ V , the integer variables

zij =

{
1, if population node vi is supplied by a stop in vj,
0, otherwise,

for vi ∈ W , vj ∈ V , and the integer variables

ui =

{
1, if population node vi is covered within distance M,
0, otherwise,

for vi ∈ W . Finally, we define the coverage matrix A = (aij) by

aij =

{
1, if dij ≤ M,
0, otherwise,

for vi ∈ W , vj ∈ V . Then, an equivalent representation of our problem is given by:

min


 ∑

vi,vj∈V, i 6=j

c′ijxij,
∑

vi∈W

pi

∑

vj∈V

dijzij, − ∑

vi∈W

wiui


 (5)

s.t. ∑

vj∈V

xij = yi (vi ∈ V ) (6)

∑

vi∈V

xij = yj (vj ∈ V ) (7)
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∑

vi∈S, vj∈V \S
xij ≥ yt (S ⊂ V, v1 /∈ S, vt ∈ S) (8)

∑

vj∈V

zij = 1 (vi ∈ W ) (9)

yj − zij ≥ 0 (vi ∈ W, vj ∈ V ) (10)
∑

vj∈V

aijyj ≥ ui (vi ∈ W ) (11)

xij ∈ {0, 1} (vi ∈ V, vj ∈ V ) (12)

zij ∈ {0, 1} (vi ∈ W, vj ∈ V ) (13)

ui ∈ {0, 1} (vi ∈ W ) (14)

The first component of (5) is objective function Z1, represented by means of the
modified costs c′ij introduced after eq. (2). The second component is objective
function Z2, multiplied by N . The third component is obtained from objective
function Z3 by first multiplying Z3 by N , and then subtracting the constant N from
the result.

Conditions (6) and (7) ensure that every node on the tour has exactly one suc-
cessor and one predecessor, and that nodes outside the tour have neither successors
nor predecessors. Conditions (8) are the usual subtour elimination constraints for
the TSP, applied to tour stops. Conditions (9) and (10) together ensure that every
population node is supplied by a tour stop. Conditions (11) state that a population
node can only be covered within distance M by a node if this node is within distance
M and chosen as a tour stop. Conditions (12) to (14), finally, are the usual binary
integrality constraints.

We would like to emphasize that the given formulation of the multiobjective
location-routing problem with objectives (5) – (14) is general enough to be relevant
also for other areas of application.

3 Solution Algorithms

Our aim is to provide the decision maker with a set of feasible solutions of the
multicriteria optimization problem by eliminating those solutions that (a) are not
Pareto-efficient, or (b) violate some predefined aspiration levels. A solution is called
Pareto-efficient if there is no other solution that dominates it, where the dominance
relation is defined as follows: solution π1 dominates solution π2, if π1 is at least
equally good as π2 with respect to all objective functions, and better than π2 with
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respect to at least one objective function. An aspiration level is an upper bound for
some objective (cost) function.

The exclusion of solutions violating aspiration levels becomes trivial as soon as
the set of Pareto-efficient solutions has been determined (except in the case where
this set is too large to be stored). Therefore, our real concern is the determination
of Pareto-efficient solutions.

For problem instances of a realistic magnitude, an algorithm computing exactly
the set of all Pareto-efficient solutions cannot be expected. This is due to the fact
that the problem under consideration is NP-hard: Consider the special case where
µ = 0 and M is smaller than mini6=j dij. A solution minimizing (Z3, Z1, Z2) lexico-
graphically (i.e., giving Z1 a negligible weight compared to Z3, and Z2 a negligible
weight compared to Z1) is Pareto-efficient and must therefore occur in the desired
output set as an identifiable element. However, Z3 is minimized in the indicated
special case by choosing all elements of V as tour stops, and given that this is done,
Z1 is minimized by solving the TSP with distance matrix cij. The solution of a TSP,
however, is an NP-hard problem. Therefore, also (5) – (14) is an NP-hard problem,
which makes the application of heuristics to its approximate solution advisable.

For this purpose, we have designed and implemented two approaches, which will
be presented in the sequel.

3.1 Approach 1: Simultaneous Location and Routing by P-
ACO

Our first approach treats the location aspect and the routing aspect of the prob-
lem simultaneously. For this purpose, we have adapted the P-ACO technique, a
multicriteria metaheuristic introduced in [12] and [13], to the problem considered
here. P-ACO (Pareto-ACO) generalizes the Ant Colony Optimization (ACO) meta-
heuristic (see below) for single-objective problems to the case of several objective
functions, determining approximations to the set of Pareto-efficient solutions.

The ACO approach has been developed since 1992 by Dorigo, Maniezzo and
Colorni and has found numerous applications in diverse fields in the meantime. For
surveys, we refer the interested reader to [16] or [15]. Let us shortly recapitulate
the basic ideas of the approach. ACO is a nature-inspired metaheuristic with the
following main features:

• Solutions are constructed randomly and step-by-step.

• Construction steps that have turned out as part of good solutions are favored.
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• Construction steps that can be expected to be part of good solutions are favored
as well.

The stepwise construction of a solution is represented by a random walk in a
certain graph. One imagines that these walks are performed by conceptual units
called ants.

In our application, the graph on which the random walks take place is a complete
undirected graph with the settlements vi ∈ V as nodes and an edge between each
pair of nodes. For the sake of a more concise notation, we shall refer to node vi

simply by i in this subsection.
There are problem-dependent rules determining for each step of the walk which

nodes are feasible as successor nodes and which are not. When there is no feasible
successor node anymore or some stopping criterion is satisfied, the walk ends and is
decoded as a complete solution of the problem.

In our application, the walk always starts at node 1 of the graph, the feasibility
rule says that no node except the start node is allowed to be visited more than once,
and the stopping criterion is that the start node 1 is visited for the second time.

When constructing a walk, the probability to go from a node i to a feasible
successor node j is chosen as

Pr(j|i) proportional to τ(i, j) · η(i, j), (15)

where τ(i, j) is the so-called pheromone value, a memory value storing how good
step (i, j) has been, and η(i, j) = ηu(i, j) is the so-called visibility, a pre-evaluation
of how good step (i, j) will presumably be, given the partial walk u up to now. This
pre-evaluation is done in a problem-specific manner. Pheromone initialization and
update is performed as follows:

Pheromone initialization: Set τ(i, j) = 1 for all edges (i, j).

Pheromone update: First, set, for each edge (i, j),

τ(i, j) = (1− ρ) τ(i, j)

where ρ is a so-called evaporation factor between 0 and 1. This step is called evap-
oration. Then, the pheromone values on one or more “good” paths found up to
now are reinforced by pheromone increments (possibly of different size). How this is
done in detail depends on the specifically chosen pheromone update strategy; differ-
ent strategies are described in the ACO literature. For the present paper, we used
the rank-based update strategy of [4] which we will outline below.

Random walk construction and pheromone update are iterated. Usually, instead
of only a single walk (“one ant”), s walks (s > 1) are constructed sequentially
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or (in parallel implementations) simultaneously (“s ants”). The rank-based update
strategy applied in this paper consists in selecting the s0 best walks out of the s
walks generated in the current round, where s0 < s is a constant, and in adding an
increment

∆l = δ0 · (s0 − l + 1)

to the pheromone value of each edge of the lth-best walk, l = 1, . . . , s0, with a
suitable increment factor δ0 > 0. We call the iteration consisting of the s random
walks of the ants, plus the following pheromone update, a round. In total, a fixed
number R of rounds is executed.

P-ACO extends ACO (i) by an additional outer iteration in which random
weights for each objective function are chosen, (ii) by checks whether a newly found
solution is non-dominated by candidate solutions in a current solution set and vice
versa, and (iii) by a more refined pheromone handling mechanism.

For our problem, we realize the P-ACO approach as follows: A set Π of tours
is initialized as the empty set. In successive iterations called periods, weights w1,
w2 and w3 for the objective functions Z1, Z2 and Z3, respectively, are drawn ran-
domly. Within each period, for the given weight vector w = (w1, w2, w3), a heuristic
optimization run for the single-objective problem

w1Z1 + w2Z2 + w3Z3 → min

is performed using ACO. If the resulting tour is non-dominated by all tours in Π
with respect to the three objective functions (i.e., if there is no tour in Π that
performs at least equally well as π with respect to Z1, Z2 and Z3, and even better
than π with respect to at least one objective function), then π is added to Π. If,
in this case, certain solutions in Π are dominated by π, they are deleted from Π.
After termination of the loop over the periods, Π contains the suggested solution
candidates. In total, a fixed number Q of periods is executed.

In principle, pheromone values are assigned and modified as in the standard ACO
algorithm, but we distinguish between specific pheromone values τ1(i, j), τ2(i, j) and
τ3(i, j) for Z1, Z2 and Z3, respectively. Pheromone increments are performed in
proportion to w1, w2 and w3, respectively, and when computing probabilities from
pheromone values, a weighted mean using the weights w1, w2 and w3 is applied.

The visibility function η(i, j) indicating how desirable it is to visit node vj after
node vi, deserves special attention, since it must be defined in a problem-specific
way. It can be composed as the sum of three terms η1(i, j), η2(i, j) and η3(i, j),
which refer to the three objective functions:

Term 1: A rough estimation how many stops should lie on a “good” tour is
required for determining η1(i, j). Let k̄ be the current estimate for the best number of
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stops. We initialize k̄ by a constant, and update its value during program execution
by setting k̄ equal to the average length of the tours contained in Π whenever the
last set has changed. Based on k̄, the visibility η1(i, j) corresponding to objective
function 1 is determined as follows:

η1(i, j) = K1 ·
{

c−α
ij , if j 6= 1 or less than k̄ nodes have been visited,

c̄, if j = 1 and k̄ or more nodes have been visited.

In this formula, α > 0 is a constant parameter, and c̄ is another constant that is
large compared to the values c−q

ij . Hence, a return to the start node is made more
probable when the estimated “good” tour length has already been reached. K1 is a
constant calibration factor for the first term of the visibility function.

Term 2: While an ant constructs tour π, it records the average distance of the
entire population to the stops already fixed on this tour, and it computes by which
value this average distance is reduced if a certain node vj is chosen as the next stop.
This difference, multiplied by a calibration factor K2, is chosen as the visibility term
η2(i, j).

Term 3: For each settlement vj, the number λj of potential stops within a
distance of not more than M kilometers from vj is determined. Then, we set

η3(i, j) = K3 ·
{

pj/λj, if λj ≥ 1,
ε, if λj = 0,

where ε > 0 is a small constant. Thereby, settlements with a large number of
inhabitants as well as settlements from which only few potential stops can be reached
within a distance of not more than M kilometers, are favored. Favoring settlements
with λj = 0 would not be advantageous, since they cannot be serviced within a
distance of not more than M kilometers anyway.

The resulting tour is post-optimized by local search. For this purpose, we use
the well known 2-opt-procedure (see [9]). During the post-optimization of the tour,
the tour stops remain fixed. Therefore, this step can improve objective function (1)
while leaving objective functions (2) and (3) unchanged.

In Fig. 1, we give a pseudocode formulation of the overall algorithm.

For judging the computational complexity of P-ACO/LR, we assume that an
upper bound Λ on the length of the list Π is given, with the following effect: In the
case that the list would exceed length Λ by the insertion of a new element, the new
element is only inserted if at least one element of Π can be deleted from the list by
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Procedure P-ACO/LR
initialize pheromone matrices τm = (τm(i, j)) (m = 1, 2, 3);
initialize output set Π as empty set;
for period q = 1 to Q {

draw weights w1, w2 and w3 randomly from [0, 1];
normalize the weights to w1 + w2 + w3 = 1;
compute current weighted pheromone matrix as τ =

∑3
m=1 wmτm;

for round r = 1 to R {
for ant σ = 1 to s {

set node index i = 1;
while (node 1 not chosen for the second time) {

compute visibility matrices ηm = (ηm(i, j)) (m = 1, 2, 3);
compute current weighted visibility matrix as η =

∑3
m=1 wmηm;

compute transition probabilities p(i, j) to feasible successor nodes by (15);
choose successor node j according to p(i, j);
set i = j and mark i as already visited;

} /* end while */
improve the tour by 2-opt;
store the tour;

} /* end for ant */
compute costs Zm(σ) (m = 1, 2, 3; σ = 1, . . . , s) for each of the found tours;
compute current weighted costs Z(σ) =

∑3
m=1 wmZm(σ) (σ = 1, . . . , s);

compute the best s0 tours π∗1, . . . , π
∗
s0

with respect to the values Z(σ);
if (best tour π∗1 is non-dominated by all tours in Π)

add π∗1 to Π and delete all tours from Π that are dominated by π∗1;
for m = 1 to 3

do rank-based update for τm, using π∗1, . . . , π
∗
s0

and δ0 = const · wm;
update τ by setting τ =

∑3
m=1 wmτm;

} /* end for round */
} /* end for period */

Fig. 1. Pseudocode P-ACO for Location-Routing.
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domination. Furthermore, it is assumed that the number of performed 2-opt moves
is bounded by a constant ω, and that s0 is a (small) constant of order O(1).

Proposition 3.1. On the assumptions indicated above, the worst-case complexity
of P-ACO/LR is of order

O( QR [s |W ||V |+ s ω |V |2 + Λ]).

Proof. In each of the R rounds of each of the Q periods, the actions contributing
to the complexity in an essential way are the following:

• For determining Z2 for each of the s tours, the minima d(i, π) of O(|V |) dis-
tances have to be computed for |W | population centers, which yields an effort
of O(s |V | |W |) in total. Note that Z3 can be computed in an analogous man-
ner, replacing d(i, π) by d̄(i, π) = 1 if d(i, π) > M and d̄(i, π) = 0 otherwise,
and that the computation of Z1 for the s tours requires only an effort of
O(s |V |).

• Applying a single 2-opt move to a tour of length O(|V |) requires a search
among O(|V |2) neighbor solutions; the changed objective function value for
each neighbor solution can be determined in O(1) time. This yields a total
effort of O(s ω |V |2) for the (up to) ω 2-opt moves.

• The three-dimensional cost vector of π∗1 has to be compared with up to Λ cost
vectors of the elements in the list Π, and each of these elements may need to
be deleted from the list (if dominated by π∗1), which can be done in O(1) time
for a single deletion. This yields a total effort of O(Λ).

2

3.2 Approach 2: Location by Multiobjective GA with Rout-
ing as Subprocedure

In our second approach, we deal with the two aspects location and routing separately
from each other: In a master procedure, subsets V0 ⊆ V of tour stops are selected
from the set V of possible stops. For each subset V0 of this type, a slave procedure
finds a short feasible tour π containing all nodes of V0 by solving the corresponding
travelling salesperson problem (TSP) heuristically. For the obtained tour π, the
three objective functions Z1, Z2 and Z3 are computed as described in section 2.
Thus, we obtain a (three-criteria) evaluation of the current V0.

In our implementation of the slave procedure, we have decided to apply simple
constructive TSP heuristics followed by post-optimization using the 2-opt procedure
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mentioned above, as a fast technique to get a heuristic solution of the TSP. For
the constructive heuristics producing the initial solutions, we performed tests with
the well-known Nearest Neighbor (NN) heuristic and with the Farthest Insertion
(FI) heuristic (see Johnson and McGeoch [32]). Although FI is known to perform
better than NN in general, it turned out that the post-optimization by 2-opt (which
consumes the major part of the runtime, see the complexity result in Proposition
3.2) annihilated this advantage in our tests: there was no statistically significant
difference in solution quality after 2-opt between the two approaches for computing
initial solutions. This does not hold anymore for initial tours chosen randomly; in
this case, we obtained poorer results. The experimental reports in Section 4 refer
to the NN variant.

The more difficult question is how the master procedure should be realized. Since
its task is to solve a multicriteria problem, P-ACO could be used again. For the
master procedure, however, the structure of the feasible solutions is much simpler
than in the combined location-routing setting of the previous subsection: now feasi-
ble solutions are subsets, representable by binary strings. Therefore, it is tempting
to apply a multiobjective variant of a Genetic Algorithm (GA), a metaheuristic for
which binary string representations of solutions are particularly natural.

There are several variants of multiobjective GA techniques; for a comprehensive
survey, we refer the reader to Coello et al. [8]. In our problem context, we experi-
mented with two variants: (i) the Vector Evaluated Genetic Algorithm (VEGA) by
Schaffer [44], and (ii) the Multi-Objective Genetic Algorithm (MOGA) by Fonseca
and Fleming [19].

3.2.1 Realization of the Master Procedure by VEGA

First of all, the master procedure generates an initial population of P subsets V0,
represented by binary strings. For each of these P solutions, the number of tour
stops (i.e., the cardinality |V0| of V0) is determined by drawing a random number
uniformly distributed between ξmin · |V | and ξmax · |V |, where |V | is the number of
potential stops, and ξmin ∈ [0, 1] and ξmax ∈ [0, 1] (ξmin < ξmax) are minimum and
maximum values for the share of selected stops, respectively. The two parameters
ξmin and ξmax are determined in advance by educated guesses. After fixing |V0| in
this way, a specific subset V0 with given cardinality is chosen uniformly at random
from the set of all

( |V |
|V0|

)
candidates. For each generated string, the slave procedure

is called to compute an assigned tour π. This produces P tours.
Now, according to Schaffer’s VEGA approach, the whole population is split into

three fractions, each containing P/3 tours, corresponding to the three objective
functions Z1, Z2 and Z3. From fraction m, a new set of P/3 elements is selected
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randomly by the standard selection mechanism of GA, according to objective Zm

(m = 1, 2, 3). All the selected elements are then shuffled together to obtain a new
population of total size P . To the elements (tours) of the new population, two types
of mutation operators and a crossover operator are applied: The first mutation
operator consists in a random 2-opt-move; the second mutation operator replaces
a chosen tour stop by a currently not chosen tour stop and applies then the 2-opt
procedure to improve the resulting tour. As a crossover operator, we apply the
OX crossover for TSP tours proposed by Davis [11]. This is a two-point crossover
where, from two parent tours, the medium parts are copied to the two offspring tours
unchanged, while the other parts are copied in switched order, omitting already
occurring symbols.

The population generation step described above is iterated R times. (Since these
iterations play a similar role as the rounds in P-ACO/LR, we denote their number
by the same symbol R.) Fig. 2 shows the resulting overall pseudocode for the master
procedure.

Proposition 3.2. On the assumptions of Proposition 3.1 and with the same nota-
tion, the worst-case complexity of VEGA/LR including the execution of the slave
procedure is of order

O( PR [ |W | |V |+ ω |V |2 + Λ]).

Proof. The essential contribution to the complexity of the slave procedure comes
from the 2-opt moves, hence the total effort for one execution of this procedure is
of order O(ω |V |2) (see the proof of Proposition 3.1).

In the “repeat” loop, the slave procedure is called P times, which yields a total
effort of O(P ω |V |2).

In each of the R iterations of the “for generation...” loop, the actions contributing
to the complexity in an essential way are the following:

• In the selection step, the determination of Z1 to Z3 for each element of Pop
requires an effort of O(|V | |W |), which yields an effort of O(P |V | |W |) in total.

• In mutation 2, the 2-opt procedure applied to each mutated element requires
an effort of O(ω |V |2), which yields an effort of O(P ω |V |2) in total.

• For each element of Pop, comparison with and eventual deletion of an element
of the list Π requires an effort of O(Λ), which yields an effort of O(PΛ) in
total.

As it can be seen, the effort for the “repeat” loop is negligible, compared to that for
the “for generation...” loop. 2
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Procedure VEGA/LR
repeat P times {

choose cardinality |V0| of subset V0 ⊆ V at random;
choose V0 ⊆ V with given cardinality at random;
call slave procedure to assign a tour π to V0;
add π to initial population Pop;

}
initialize output set Π as empty list;
for generation r = 1 to R {

split Pop into fractions Pop1, Pop2 and Pop3;
for m = 1 to 3 {

evaluate the elements of Popm according to Zm;
select new fraction Popnew

m from Popm according to standard GA rule;
}
establish new Pop by shuffling together Popnew

1 , Popnew
2 and Popnew

3 ;
apply mutation 1 (2-opt move) to a certain fraction of Pop;
apply mutation 2 (tour stop exchange plus 2-opt procedure) to a certain

fraction of Pop;
apply OX crossover to a certain percentage of pairs of elements of Pop;
for each element of Pop

if element is non-dominated by elements in Π, add it to Π and delete
all dominated elements from Π;

} /* end for r */

Fig. 2. Pseudocode VEGA for Location-Routing (Master Procedure).

17



3.2.2 Realization of the Master Procedure by MOGA

MOGA is similar to VEGA, so we keep our presentation short (for more details on
the basic MOGA algorithm, the reader is referred to [19]) and concentrate on the
differences. The main difference is that by a specific ranking mechanism, MOGA
tries to avoid “speciation” effects, i.e., the evolution of “species” that excel only on
a single objective function, but are poor with respect to the others.

The ranking is done as follows: Let us consider an individual π (in our case: a
tour) in generation r of the population. It is counted how many other individuals
of the current generation dominate π in the sense of the definition given at the
beginning of section 3. Let χ(π, m) denote the number of elements dominating π.
Then the rank of π in the current generation is defined as

rank (π,m) = 1 + χ(π, m).

The lower the rank, the better is the given individual compared to the other indi-
viduals in the current generation. Now, instead of partitioning the population into
fractions and performing selection in each fraction according to the corresponding
objective function as in VEGA, the MOGA approach performs selection from the
entire population based on fitness values that are linear functions of the ranks. In
this way, good compromise solutions, which are unable to survive under the VEGA
scheme, are encouraged.

In order to avoid premature convergence, MOGA is supplemented by a niche-
formation technique trying to distribute the population over the Pareto-efficient
region. We omit the details and refer the reader to the literature cited above.

4 Example Study: Tour Planning for the Thiès

Region in Senegal

Senegal is a country at the West-African coast with a total population of about
9 600 000 (WHO [31]). The country became independent from the former colonial
power France in 1960. Senegal is largely muslim, politically stable, and a multi-
party democracy. It is a small, poor and moderate secular nation, but still among
the world’s least developed countries, despite the relatively modern capital city.
Although Senegal’s economic growth has recently improved, it has been virtually
negated by high population growth of 2.5%. The per capita Gross Domestic Prod-
uct (GDP) is US$ 500, of which 4.7% is spent on healthcare (WHO [31], USAID
[30]).
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Fig. 3. Map of the Thiès region in Senegal.

Social services in Senegal remain extremely limited, especially for women and
children. Mature mortality is high (around 30 % between 15 and 59), and many
infants die of preventable diseases. Senegal suffers from relatively high childhood
mortality rates (14 % per 1 000 dying under age of 5 years), and women still bear on
average 5.2 children each. Live expectancy at birth is 55.8 years, and the expectancy
of lost healthy years at birth due to poor health is around 10 years.

The road net comprised around 14 500 km in 1998, and the railway network
around 1 257 km, which is comparably few for a country of 197 000 square km. Thus,
finally, a majority of the Senegalese population does not have access to adequate
health services and almost half do not have access to safe water (US-Embassy Dakar
[29]).

For testing our approach, we chose the Thiès region in the west part of the coun-
try. Fig. 3 shows a map of this region. It is divided into three departments (Mbour,
Thiès and Tivaouane), each consisting of some smaller districts (“arrondissements”).

Using ArcView version 3.2, we built a GIS (geoinformation system) providing
the essential information for our purpose. In particular, we recorded 500 settlements
(from cities to small villages) with their numbers of inhabitants, as well as the
road connections between these settlements. The GIS information was obtained
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based on detailed regional maps and on census data from 1988. We remark that
more recent data exist, but are not yet released for public use by the government.
For the purpose of testing the computational approaches, it can be expected that
inserting the new data will not lead to essentially different results. Location data
on settlements and roads were digitized semi-mechanically in ArcView. Distances
were then obtained electronically, and the roads were classified into five classes, for
which average velocities of cars were estimated.

Our aim was to compute plans covering the entire region by a small number of
tours, each of which should have a period T of one week, such that medical service
could be provided weekly. Already existing medical facilities, both stationary and
mobile, were disregarded (see the remarks at the beginning of section 2). A rough
calculation showed that (at least) four tours were required to achieve the indicated
goal, keeping our three cost functions below reasonable aspiration levels. We chose
the following thresholds as aspiration levels: Objective Z1 (nonproductive share of
work): 0.90; objective Z2 (average walking distance): 3 km; objective Z3 (share of
uncovered population): 0.4.

For clustering the settlements to be served by each of the four tours, we decided
to respect the partition of the region into districts and comprised these districts to
four service areas “north” (N), “north mid” (NM), “mid south” (MS) and “south”
(S), and in such a way that the numbers of settlements were approximately equally
distributed. Fig. 4 shows the road network and the resulting area partition.

The problem described in section 2 was solved by each of the three approaches
P-ACO, VEGA and MOGA for each area separately. The parameters of our model
have been chosen as follows:

• Total working time of a member of the MF personnel during the period: T = 40
hours, i.e., one week.

• Time for the setup of the MF at a stop per member of the MF personnel:
µ = 1/6 hours, i.e., 10 minutes.

• Upper bound for an acceptable walking distance to the nearest tour stop:
M = 8 km.

The heuristic approaches where implemented on a PC Pentium III, 1400 Mhz,
under operating system Windows XP. We have chosen the following parameter val-
ues for the three algorithms: (i) P-ACO/LR: s = 20, s0 = 3, Q = 30, R = 30.
(ii) VEGA/LR: P = 100, R = 600. (iii) MOGA/LR: P = 100, R = 600. Pro-
grams where written in C++ (compiler: Borland C++, version 6). Runtimes varied
according to the number of non-dominated solutions produced in each single case.
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In the average, a run of P-ACO required about 12 minutes, whereas VEGA and
MOGA produced the result set already within about 3 minutes in the average.

MS

N

NM

S

Fig. 4. Road network and chosen area partition.

Before presenting the overall comparison between the three approaches, let us
look at some typical solutions for the “south” area, which has 99 potential tour
stops. Fig. 5 shows a tour produced by P-ACO with cost values Z1 = 0.48, Z2 = 2.2
and Z3 = 0.14. The tour contains 32 stops (squares in the figure). As it can be
seen, this is a solution where objective (1) has been favored: A degree of 52 %
of medically productive working time is reached, which is rather high, compared
to other obtained solutions. The price for this favorable value is a relatively high
average distance to tour stops (2.2 km), and a poor coverage rate: 14 % of all people
do not reach a tour stop within a distance of 8 km.

In Fig. 6 – also this solution has been produced by P-ACO – a tour is presented
where objective (3) has been favored. The corresponding cost values are Z1 = 0.90,
Z2 = 0.76 and Z3 = 0.04. The tour has 54 stops. Now, both coverage rate and
average distance are favorable, but the economic efficiency is very poor: only 10 %
of the working time is spent on medical treatment. Obviously, this is an extreme
solution that will most probably not be chosen by the decision makers.
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Fig. 7 shows a tour produced by MOGA, with cost values Z1 = 0.50, Z2 = 2.3
and Z3 = 0.12. The achieved objective function values resemble those of the tour
shown in Fig. 5.

The three shown solutions have some tour stops in common; in particular, Mbour,
a larger city in the west of the area “south”, gets a tour stop in each of the three
cases, which is evidently reasonable.
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Fig. 5. P-ACO example tour (1): good objective function value with respect to
objective 1.
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Fig. 6. P-ACO example tour (2): good objective function value with respect to
objective 3.
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Fig. 7. MOGA example tour: good objective function value with respect to
objective 1.

Tables 1 – 4 (corresponding to the areas “south”, “mid south”, “north mid” and
“north”, respectively) present overall comparison results for the implemented tech-
niques P-ACO, VEGA and MOGA. Comparisons are performed pairwise (P-ACO
vs. MOGA, P-ACO vs. VEGA, and VEGA vs. MOGA). The algorithm indicated in
a line is taken as the “first” algorithm of the comparison, the algorithm indicated
in a column is taken as the “second” algorithm of the comparison. In each line,
after the name of the algorithm, we indicate in dots the number of non-dominated
solutions produced by this algorithm. The entries of the table are pairs of integers
which are to be interpreted as follows:

• First integer: number of solutions produced by the algorithm indicated in the
line that are dominated by some solution in the output set of the algorithm
indicated in the column.

• Second integer: number of solutions produced by the algorithm indicated in
the line that are not dominated by any solution of the algorithm indicated in
the column.

Thus, a final judgement on the relative merits of two algorithms can be made by
looking at the ratio of the second integers in the two entries referring to the com-
parison of these two algorithms. For instance, when P-ACO is compared to MOGA
on the data of the “south” area, these integers are 25 for P-ACO and 8 for MOGA.
This means that if the solutions of P-ACO and those of MOGA are composed to
a joint solution set (containing 80 solutions), and if dominated solutions are elim-
inated afterwards, then there remains a resulting set of 33 solutions, 25 of which
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have been contributed by P-ACO, and only 8 of which have been contributed by
MOGA.

Interpreting the results in the four tables, we see that for area “south”, P-ACO
and VEGA performed equally good, and MOGA performed worse. For “mid south”,
MOGA performed best and VEGA performed worst. For “north mid”, all the three
approaches performed nearly equally good, with a slight advantage for MOGA over
VEGA. For “north”, the ranking was similar as for “mid south”. Thus, there is
no consistent winner, but we can state that MOGA was the only approach that
eventually was distinctly better than both others, and P-ACO was the only approach
that never was worse than both others.

A finer analysis reveals that MOGA solution sets typically differ from P-ACO
solution sets in the following aspect: MOGA usually produces a larger variety of
sometimes extreme solution candidates (VEGA tends even more to the extremes),
whereas P-ACO seems to put more emphasis on good compromise solutions. Since
both properties have their particular merits, it can be suggested to use, in a decision
support system, both the P-ACO and the MOGA approach and to combine the
solution sets, omitting dominated solutions.

Algorithm (# solutions) Dominated sol. / Remaining sol.
P-ACO MOGA VEGA

P-ACO (25) — 0 / 25 0 / 25
MOGA (55) 47 / 8 — 44 / 11
VEGA (36) 12 / 24 7 / 29 —

Table 1. Comparative results for area “south”.

Algorithm (# solutions) Dominated sol. / Remaining sol.
P-ACO MOGA VEGA

P-ACO (26) — 8 / 18 6 / 20
MOGA (42) 1 / 41 — 1 / 41
VEGA (17) 2 / 15 16 / 1 —

Table 2. Comparative results for area “mid south”.

Algorithm (# solutions) Dominated sol. / Remaining sol.
P-ACO MOGA VEGA

P-ACO (79) — 18 / 61 15 / 64
MOGA (108) 49 / 59 — 32 / 76
VEGA (94) 29 / 65 42 / 52 —
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Table 3. Comparative results for area “north mid”.

Algorithm (# solutions) Dominated sol. / Remaining sol.
P-ACO MOGA VEGA

P-ACO (65) — 15 / 50 8 / 57
MOGA (75) 17 / 58 — 4 / 71
VEGA (58) 27 / 31 53 / 5 —

Table 4. Comparative results for area “north”.

5 Conclusions

We have given a multiobjective combinatorial optimization (MOCO) formulation
for a location-routing problem in healthcare management: For a mobile healthcare
facility, a closed tour on a suitably selected subset of a given set of population nodes
has to be found. Tours are evaluated according to the following three criteria: (i)
an economic efficiency criterion that can be expressed as a weighted average of the
number of tour stops and the tour length, (ii) the p-median criterion of average
distances to the nearest tour stops, and (iii) a coverage criterion that measures
the percentage of the population unable to reach a tour stop within a predefined
maximum distance.

Three algorithms to compute approximations to the set of Pareto-efficient so-
lutions of the described MOCO problem have been developed. The first uses the
P-ACO technique and performs selection of tour stops and tour construction si-
multaneously, whereas the second and the third use the VEGA and the MOGA
variant, respectively, of Genetic Algorithm approaches to MOCO, and perform the
selection of tour stops on an upper procedure level and tour construction in a 2-opt
subprocedure.

Our computational experiments were carried out for the Thiès region in Senegal,
which we partitioned into four sub-areas. For each of these areas, sets of Pareto-
efficient tours were computed by the three algorithmic approaches. From the com-
parative evaluation of the solutions, we are inclined to suggest a combination of
P-ACO and MOGA as a promising technique for providing the political decision
maker with an adequate set of good solution candidates. Further experiments will
be required to get more information on the relative merits of the investigated ap-
proaches.
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The focus of this paper is on problem formulation and suitable optimization tech-
niques. For test purposes, we have investigated the decision problem for the Thiès
region on the simplifying assumption that all medical services are to be covered by
the mobile facilities alone; existing fixed healthcare facilities have not been included
into the consideration. For this reason, a formulation of concrete policy implications
is outside the scope of this study. Nevertheless, some cautious conclusions can al-
ready be drawn. The results in Section 4 show that on the indicated assumptions,
even in the absence of healthcare facilities in the considered region, four mobile units
could provide access to medical service for about 85 % of the population within 8
km distance, with an average distance of about 2 km. The overhead of personnel
costs for non-medical activities would be about 100 % in this case. Of course, the
made assumptions will have to be discussed, but we feel that the results indicate at
least that supplementing locally fixed medical stations by mobile healthcare units
should be taken into consideration as a possibly useful measure when an extension of
access to medical service in a country with a low healthcare budget is intended. The
advantages of mobile units will have to be traded off against evident disadvantages,
for example, the lack of continuous care for patients by medical personnel. It should
be kept in mind, however, that by a suitable mix between the “stationary” and the
“mobile” policy, the system can be fine-tuned to the particular needs of a concrete
country. It may be preferable to supplement the stationary hospitals or healthcare
stations by some few mobile units providing care even at a rather low level instead
of excluding large parts of the population totally from medical supply.

Future research should address also some important extensions of the model it-
self. We give a few examples. First, of course, the just-mentioned assumption should
be dropped that medical supply in the considered area is provided exclusively by the
mobile healthcare units. Instead, existing (or planned) stationary facilities should
be taken into account as well. In a first approximation, this extension is very easy
to perform: All that needs to be done is to reduce, in the problem instance descrip-
tion, the numbers of inhabitants of each settlement by the (estimated) numbers of
people who are already supplied by stationary healthcare facilities such as hospitals
or primary healthcare dispensaries (located close enough to the settlement). How-
ever, what would not be obtained in this way are overall objective function values
for average accessibility and coverage, including the services of the fixed facilities.
Therefore, it would be desirable to include the supply delivered by the fixed facilities
explicitly into the model, which requires an essential (although rather straightfor-
ward) generalization of the model formulation.

Second, results of studies on the effect of the distance from home to health
facilities (cf. Morris and Lee [37], Müller et al. [38]) should be used to refine the
model.
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Third, an availability criterion (influenced by opening times, relation between
demand and supply, queues, types of diseases, medicaments and doctors) should
enter into the model as a fourth objective. In our model in its present form, the
overall duration of the tour is fixed in advance, and the distribution of the dura-
tions of stay of the mobile facility to the single tour stops is left open. Evidently,
duration of stay has significant influence on the quality of service, but this question
is confronted with a tradeoff: Prolonged stays facilitate the reduction of queues and
improve service, but on the other hand, they also increase the overall time for one
cycle of the tour, which means that the visits of the MF at a special tour stop occur
less frequently. Thus, also durations should be considered as decision variables and
be subject to optimization, preferably based on statistical data about demands and
with the aid of an appropriate stochastic model.

Finally, the patient data should be classified according to the severity of their
diseases. For example, a distinction between emergency and non-emergency cases
could be carried out. In our basic framework, we assume that not only the chosen
tour itself, but also the durations of stay are fixed in advance (otherwise, peo-
ple could not rely on meeting the MF at a known date). However, it can make
sense to admit exceptions, including the possibility of changing the tour, depend-
ing on the occurrence of emergency cases. This could lead to longer distances or
waiting times for non-emergency patients, but save the lives of a number of emer-
gency patients. Formally, tour planning with possible tour changes would require
a stochastic-dynamic optimization model. Such optimization problems are notori-
ously hard to treat computationally; effort invested in a ”on-line” decision support
system enabling reactions on emergency cases may be well-spent nevertheless.
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