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Abstract

The multi-vehicle covering tour problem is de"ned on a graph G"(<X=, E), where= is a set of vertices
that must collectively be covered by up to m vehicles. The problem consists of determining a set of total
minimum length vehicle routes on a subset of <, subject to side constraints, such that every vertex of= is
within a prespeci"ed distance from a route. Three heuristics are developed for this problem and tested on
randomly generated and real data.

Scope and purpose

In the problem considered in this article, we are given two sets of locations. The "rst set, <, consists of
potential locations at which some vehicles may stop, and the second set,=, are locations not actually on
vehicle routes, but within an acceptable distance of a vehicle route. The problem is to construct several
vehicle routes through a subset of <, all starting and ending at the same locations, subject to some side
constraints, having a total minimum length, and such that every location of= is within a reasonable distance
of a route. A common application of this problem arises in the delivery of health care facilities by mobile units
in developing countries. Here, vehicles travel through a limited number of villages, and every location that is
not visited must be within walking distance of a visited location. This article proposes three heuristics
capable of solving instances of realistic size within reasonable computing times. ( 1999 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

The purpose of this paper is to present and compare three heuristics for the multi-vehicle covering
tour problem (m-C¹P) de"ned as follows. Let G"(<X=, E) be a complete undirected graph where
<X= is the vertex set, <"Mv

0
,2, v

n
N, and E"M (v

i
, v

j
) : v
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, v

j
3<X=, i(jN is the edge set.

Vertex v
0
is a depot at which are based m identical vehicles. The set< is made up of vertices that can

be visited and includes a subset ¹ of vertices that must be visited (v
0
3¹);= is a set of vertices that

must be covered. A distance or travel time matrix C"(c
ij
) satisfying the triangle inequality is

de"ned on E. In what follows, c
ji

must be interpreted as c
ij

if j'i. The m-C¹P consists of designing
a set of m vehicle routes of minimum total length satisfying the following constraints:

1. there are at most m vehicle routes, and each of them starts and ends at the depot;
2. each vertex of< belongs to at most one route while each vertex of ¹ belongs to exactly one route;
3. each vertex of=must be covered by a route in the sense that it must lie within a preset distance

c of a vertex of < belonging to a route (we assume that v
0

does not cover all vertices of =);
4. the number of vertices on any route (excluding the depot) cannot exceed a preset value p;
5. the length of each route cannot exceed a preset value q.

Applications of the m-CTP arise in a number of settings. An example is the post-box location
problem [1] where one must simultaneously locate post-boxes in a set < and construct optimal
collection routes. Another example is the design of routes for mobile health care delivery teams in
developing countries where services are rendered at a selected number of locations by medical
teams, and the population living outside these locations must travel on foot to reach them (see, e.g.,
[2}5]. Similar problems are encountered in several Western countries by health care prevention
teams [6], in the dairy industry [7], and by mobile library or banking systems.

The m-CTP with ¹"< reduces to a vehicle routing problem (VRP) with unit demands (see, e.g.,
[8, 9] for recent surveys on the VRP). The 1-CTP without side constraints 4 and 5 was recently
solved exactly by branch-and-cut for D< D)100 and D= D)500 [9]. This reference also contains
a heuristic capable of producing solutions within 3% of optimality on most instances.

The methodology developed in [10] does not extend easily to the m-CTP with side constraints as
this problem appears to be more di$cult than the standard VRP which itself can rarely be solved
exactly when D< D*50. Heuristics therefore appear to be the only practical solution approach for
the m-CTP. Our aim is to develop three such heuristics. The "rst two extend the savings [11] and
the sweep [12] heuristics for the VRP. The third is based on the route-"rst/cluster-second heuristic
developed in [13] for the 1-CTP.

The remainder of this paper is organized as follows. An integer linear programming formulation
for the m-CTP is presented in Section 2. The three heuristics are described in Section 3. These are
compared on randomly generated data and on a real-life example in Section 4. The conclusion
follows in Section 5.

2. Formulation

To better focus on the m-CTP, we formulate it as an integer linear program. For each vertex
v
l
3=, de"ne its covering set S

l
"Mv

h
3< : c

hl
)cN. Let y

hk
be a binary variable equal to 1 if and
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only if vertex v
h
3< is visited by vehicle k in the solution. Also, let x

ijk
(i(j) be an integer variable

represented by the number of times vehicle k uses edge (v
i
, v

j
). If i"0, this variable takes the values

0, 1 or 2 (in the case of a return trip). If i'0, x
ijk

is binary. The problem is then (m-CTP)
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In this formulation, constraints (2) ensure that each vertex v
l
of= is covered at least once, while

constraints (3) specify that each vertex v
k
of < appears at most once in the solution. Constraints (4)

ensure that the solution will contain two edges used by vehicle k and incident to vertex v
h
, or none

at all. Constraints (5) are connectivity constraints. If vertex v
h
does not appear in the solution, then

the right-hand side is equal to zero and the constraint is redundant. Otherwise, at least two edges
will connect S and its complement<CS; this is valid since a visited vertex v

h
belongs to S and there

exists vertices of ¹ outside S that must be visited by a vehicle. Constraints (6) ensure that at most
m vehicles enter and leave the depot, constraints (7) state that no route contains more than
p vertices of <, and constraints (8) impose the maximal route length requirement. The remaining
constraints correspond to the standard integrality conditions.
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3. Heuristics

We have developed three heuristics for the m-CTP. The "rst two extend the savings heuristic
[11] and the sweep heuristic [12] for the VRP. The third one is a route-"rst, cluster-second
approach of the type suggested by Beasley [13]. Each of these uses H-1-CTP, a heuristic for the
1-CTP, and 2-opt*, a modi"cation of the standard 2-opt edge exchange heuristic for the traveling
salesman problem (TSP) [14]. We "rst describe these two procedures, followed by the three m-CTP
heuristics.

3.1. Description of H-1-CTP

This heuristic described in [10] combines the Balas and Ho [15] PRIMAL1 heuristic for the set
covering problem with the GENIUS composite heuristic for the TSP [16]. Given a set covering
problem of the form

minimize +
vh|V

c
h
y
h

(13)
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vh|Sl
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*1 (v
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h
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PRIMAL1 constructs a solution in a greedy fashion by "rst setting y
h
:"1 for all v

h
3¹, and

selecting at each subsequent step a variable y
h

minimizing a function f (c
h
, b

h
), where b

h
is the

number of vertices v
l
3= satisfying c

hl
)c and not yet covered. Three de"nitions of f are used:

(i) f (c
h
, b

h
)"c

h
/log

2
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h
; (ii) f (c

h
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h
)"c

h
/b

h
; (iii) f (c

h
, b

h
)"c

h
. PRIMAL1 considers in two di!er-

ent orders the three de"nitions of f. It constructs a set covering solution using the "rst de"nition.
All vertices of< covering a vertex of= at least twice are then removed from the cover and the next
de"nition of f is used in the following round. In H-1-CTP, we apply in turn the two sequences
(i)} (ii)} (iii) and (i)}(iii)} (ii).

GENIUS "rst constructs a TSP tour starting with three arbitrarily chosen vertices, and inserting
at each iteration a vertex between two of its closest neighbours in the partial tour, while performing
a local reoptimization of the tour. When all vertices have been included in this fashion, an attempt
to "nd a better solution is made by removing and reinserting in turn each vertex of the tour while
performing local reoptimizations. A full description of this algorithm is provided in [16].

Heuristic H-1-CTP constructs an initial tour over the set ¹ of compulsory vertices by means of
GENIUS. It then gradually adds vertices to it by using in turn each of the three de"nitions of
f used in PRIMAL1, until all vertices of= are covered by the vertices on the tour. When a feasible
solution has been obtained with a given f, all vertices of the current tour associated with
overcovered vertices of= are removed and the next de"nition of f is used. Whenever a vertex is
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Fig. 1. Initial solution with k"3 (0"depot).

added to the current tour, this is done using a GENIUS type insertion. The step-by-step
description of H-1-CTP follows.

Step 1 (Initialization). Set H :"¹, zN :"R. The current de"nition of f is (i).
Step 2 (¹our construction). Construct a Hamiltonian tour of length z over all vertices of H, using

GENIUS.
Step 3 (¹ermination rules). If at least one vertex of = is not covered by a vertex of H, go to

Step 4. If z)zN , set zN :"z and HM :"H. If the current de"nition of f is the last one, stop with a local
optimum of cost zN . Otherwise, remove from H all vertices associated with overcovered vertices of
= and go to Step 2 with the next de"nition of f.

Step 4 (<ertex selection). Compute for every vertex v
h
3<CH a coe$cient c

h
equal to the cost of

its cheapest insertion in the current tour on H. Determine the best vertex v
h*

to include on
H according to the current de"nition of f. Set H :"HXMv

h*
N and go to Step 2.

3.2. Description of 2-opt*

Given a feasible m-CTP solution currently containing k vehicle routes (k)m), heuristic 2-opt*
attempts to determine a better feasible solution using at most k vehicles. This is done by executing
the following steps.

Step 1 (Depot replication). Create a single tour by replacing the depot with k copies as is
currently done for the multiple TSP [17] (see Figs. 1 and 2).
Consider in turn all combinations of edge pairs in the current tour.

Step 2 (Edge removal). Given the edge combination M(v
r
, v

s
), (v

t
, v

u
)N, remove (v

r
, v

s
), (v

t
, v

u
) from

the tour and successively consider the two edge creation the two edge creation options: (i) (v
r
, v

t
)

and (v
s
, v

u
); (ii) (v

r
, v

u
) and (v

s
, v

t
). This creates one or two cycles (see Fig. 3). Such a cycle is feasible if

(i) it contains at least one copy of the depot and (ii) all chains starting and ending at a depot satisfy
constraints (7) and (8).

f If both options yield infeasible solutions or fail to improve upon the best known solution,
repeat Step 2 with the next edge combination, or stop if all have been considered.

f Otherwise implement the best feasible option and go to Step 3.

M. Hachicha et al. / Computers & Operations Research 27 (2000) 29}42 33



Fig. 2. Single tour obtained at the end of Step 1 by replicating the depot (large dots).

Step 3 (¹our patching). Construct an m-CTP solution using a single depot, where each chain
linking two depots or the same depot de"nes a route. Denote by k@ the number of vehicle routes in
this solution. Note that k@ may be less than k if the solution at the end of Step 2 contains an edge
linking two copies of the depot. Set k :"k@ and go to Step 1.

In Fig. 3, we illustrate the e!ect of removing two edges and of reconnecting the chains. Four
cases are obtained according to whether (v

r
, v

s
) and (v

t
, v

u
) are removed from the same inter-depot

chain or not, and according to the reconnection option. In cases A1 and A2, two new vehicle routes
are obtained by recombining portions of old ones. As can be seen from case A1, two disconnected
tours may be obtained. In a TSP context, this type of reconnection is infeasible. In the m-CTP, such
solutions are acceptable as long as they do not violate constraints (7) and (8). Case B1 is clearly
infeasible since one of the cycles does not contain a copy of the depot. Case B2 corresponds to
rearranging a single vehicle route.

3.3. Description of the modixed savings algorithm

This procedure determines in a "rst step a feasible m-CTP solution by applying the parallel route
construction version of the classical Clarke and Wright [11] algorithm for the VRP. In a second
step, using a greedy criterion, it removes from the solution vertices of < without leaving any vertex
of= uncovered. In a third step, it sequentially considers each route k, the subset=

k
of= covered

by vertices of route k, and <
k
, the vertices of < covering=

k
. It then applies heuristic H-1-CTP to

the subproblem induced by <
k
X=

k
. If at the end of this step a vertex v3< belongs to several

routes, it is kept in only one route, where it is the most economical. The second step is then
reapplied and, "nally, the solution is post-optimized by means of 2-opt*. The steps of this heuristic
can now be summarized.

Step 1 (<RP solution on <). Construct a VRP solution on the graph induced by < by means of
the parallel version of the Clarke and Wright algorithm, i.e., vehicle routes are gradually aug-
mented according to the largest saving.

Step 2 (<ertex removal). Compute for each vertex of < included in a vehicle route the saving
obtained by removing it from the solution and reconnecting by an edge its predecessor and
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Fig. 3. Two ways of reconnecting the tour for each of Case A and Case B. Large dots represent copies of the
depot.

successor on the route. Sort these vertices in a list by decreasing order of saving. Consider in turn
each vertex of the list and remove it if this does not cause a vertex of= to be uncovered.

Step 3 (H-1-C¹P). Consider in turn all vehicle routes k. Determine =
k
, the set of vertices of

= covered by a vertex of route k, and=
k
, the vertices of< covering=

k
. Apply heuristic H-1-CTP

to the subproblem induced by <
k
X=

k
. If any vertex of v belongs to several routes, it is only

kept in one route, where it is the most economical. Let k@ be the new route obtained in this
manner from route k. If k@ is feasible and has a cost lower than that of route k, then substitute route
k with route k@. Otherwise, route k is unchanged.

Step 4 (<ertex removal). Reapply Step 2.
Step 5 (2-opt*). Post-optimize the solution by means of 2-opt*.

3.4. Description of the modixed sweep algorithm

This algorithm "rst constructs a feasible m-CTP solution using the basic idea of the
classical sweep algorithm of Gillett and Miller [12]. The sweeping process is applied to the vertices
of ¹X=. Once a feasible solution is known, it is improved as in the modi"ed savings
algorithm. Several solutions can be generated. The modi"ed sweep algorithm can be described as
follows.
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Step 1 (Initialization). Determine the vertex v of (¹X=)CMv
0
N having the smallest ordinate and

consider the half-line having an extremity at the depot and passing through v. Relabel all vertices
v
h

of ¹X= in increasing order of the angle (v vL
0
v
h
).

Apply Steps 2 and 3 for each angle h determined in Step 1(h"1,2, hM ) and select the best overall
solution. (The value of hM is the angle of the last vertex of the "rst route constructed in Step 2).

Step 2 (Sweep). Starting with the half-line v
0
v, rotate a radius having a "xed point at v

0
in the

counterclockwise direction until a vertex v
k

of (¹X=)CMv
0
N is reached.

f If v
h
3¹, include it in the current route if this creates no infeasibility (i.e., the number of vertices

of < in the current route does not exceed p, and the length of the current route, including
c
0h

does not exceed q ), and continue the sweeping process. If v
h
cannot feasibly be included into

the current route, complete the current route by linking its last vertex to v
0
, initialize a new

route starting from v
h
, and continue the sweeping process.

f If v
h
3=, determine the vertex v

r
of S

h
covering the largest number of vertices of= and include

it in the current route if this is feasible. Otherwise complete the current route by linking its last
vertex to v

0
, initialize a new route starting from v

r
, and continue the sweeping process.

Step 3 (Solution improvement). Attempt to improve the current m-CTP solution by applying
Steps 3}5 of the modi"ed savings algorithm.

3.5. Description of the route-xrst/cluster-second algorithm

This algorithm constructs a feasible m-CTP solution in two steps. First, an unconstrained 1-CTP
solution is determined by means of the H-1-CTP heuristic. This tour is then cut into smaller
feasible routes, starting at an arbitrary vertex. The solution is then post-optimized as in the
previous two heuristics. Several solutions can be generated by using di!erent starting points to cut
the initial tour. The steps of this algorithm are as follows.

Step 1 (Route-,rst). Construct an initial 1-CTP current tour by means of the H-1-CTP heuristic.
Repeat Steps 2 and 3 starting with each vertex v included in the ,rst route built in Step 2 and select the
best overall solution.

Step 2 (Cluster-second). Starting from an arbitrary vertex v, construct a route by following the
current tour counterclockwise until it becomes impossible to include an additional vertex without
creating an unfeasibility. Consider the next vertex v and repeat this step until all vertices have been
included in a route.

Step 3 (Solution improvement). Attempt to improve the current m-CTP solution by applying
Steps 3}5 of the modi"ed savings algorithm.

4. Computational results

The heuristics just described were coded in Pascal and tested on some randomly generated
instances and on real-life data. For the random instances, we generated D< D#D= D points in
the [0, 100]][0, 100] square according to a continuous uniform distribution, with the restriction
that the depot was generated in the [25, 75]][25, 75] square. The sets ¹ and < were de"ned by
taking the "rst D¹ D and D< D points, respectively. All remaining points were assigned to =. The
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Table 1
Average results for D< D"100, D=D"100, q"R

D¹ D p Modi"ed savings Modi"ed sweep Route-"rst/cluster-second

Ratio Routes Seconds Ratio Routes Seconds Ratio Routes Seconds

1 2 1.047 8.2 1 1.017 8.1 8 1.031 8.2 6
1 4 1.082 4.4 1 1.006 4.1 49 1.027 4.3 6
1 8 1.095 2.5 1 1.013 2.4 114 1.007 2.4 7

26 2 1.024 19.9 2 1.006 19.6 24 1.034 20.1 19
26 4 1.035 10.3 1 1.014 10.0 98 1.025 10.2 20
26 8 1.054 5.3 1 1.010 5.4 210 1.021 5.3 22

51 2 1.028 30.3 2 1.001 30.0 62 1.014 30.1 32
51 4 1.025 15.4 2 1.007 15.3 168 1.011 15.5 32
51 8 1.044 8.0 2 1.003 7.9 297 1.023 7.9 33

c
ij

coe$cients were taken as Euclidean distances between pairs of vertices. The value of c was
de"ned as c"maxMmax

vh|VCT
min

vl|W
Mc

lh
N, max

vl|W
Mc

l,h(l )
NN, where h (l ) is the index of the vertex

of<C¹ that is the second closest to v
l
. With this rule, each vertex of<C¹ covers at least one vertex

of= and each vertex of = is covered by at least two vertices of <C¹.
A covering matrix was then constructed by de"ning in row l (v

l
3=) and column h (v

h
3<C¹ )

a binary coe$cient d
lh

equal to 1 if and only if c
lh
)c. We then made the following simpli"cations:

(i) each row l with d
lh
"1 for all h was eliminated; (ii) only one of several identical rows was kept;

(iii) dominated rows were eliminated (row l dominates row l @ if d
lh
)d

l{h
for all h); (iv) if a column

h covers no row of the matrix due to previous reductions, it is then eliminated.
Tests were run for various combinations of D< D, D= D, D¹ D, p and q. More speci"cally, we tested the

following values: D< D"50, 100, 200, D= D"50, 100, 200, 400, D¹ D"1, vD< D/4w, vD< D/2w, p"2, 4,
8, R, q"200, 250, 300, R. In addition, we also solved a real-life problem associated with the
planning of mobile health care facilities in Suhum District, Ghana. In this problem, D= D"148,
D< D"103 in the dry season, and D= D"148, D< D"51 in the rainy season. For this data set, we
executed tests with p"5, 10, q"R and c"3, 4, 5, 6, 7, 8 (km).

Our results are summarized in Tables 1}4. In Tables 1 and 2, D< D"100, D= D"100, and the
impact of p and q is assessed for each of the three heuristics. In Table 3, p"4, q"200 and the
impact of D< D and D= D is assessed for the best two heuristics identi"ed in Tables 1 and 2. Table 4
summarizes results for the Suhum data. In Tables 1}3, all statistics are averages over 10 instances.
In Table 4, only one instance is tested. Most headings are self-explanatory, except perhaps for the
following:

Ratio : value obtained using a given heuristic divided by the best value produced by all
heuristics compared in the table;

Routes : number of vehicle routes in the solution;
Seconds : number of CPU seconds on a SUN Sparc 1000 station;
Length : route length (km) for the Suhum data (Table 4).
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Table 2
Average results for D< D"100, D=D"100, p"R

D¹ D q Modi"ed savings Modi"ed sweep Route-"rst/cluster-second

Ratio Routes Seconds Ratio Routes Seconds Ratio Routes Seconds

1 200 1.104 2.8 1 1.009 2.7 43 1.015 2.7 7
1 250 1.115 2.1 1 1.019 2.0 81 1.007 2.1 7
1 300 1.166 2.0 1 1.023 1.7 128 1.007 1.8 8

26 200 1.064 3.9 2 1.006 3.8 132 1.021 3.9 23
26 250 1.125 3.2 2 1.019 2.8 234 1.015 2.4 23
26 300 1.126 2.4 2 1.009 2.0 357 1.007 1.9 26

51 200 1.090 4.8 3 1.023 4.9 272 1.022 4.6 35
51 250 1.071 3.9 3 1.013 3.2 417 1.012 3.5 37
51 300 1.086 3.2 3 1.018 3.0 593 1.017 2.9 38

Table 3
Average results for p"4, q"200

D¹ D D< D D= D Modi"ed sweep Route-"rst/cluster-second

Ratio Routes Seconds Ratio Routes Seconds

1 50 50 1.015 2.7 6 1.017 2.8 1
1 50 100 1.005 2.7 8 1.020 2.6 2
1 100 100 1.010 4.2 36 1.033 4.2 6
1 100 200 1.009 4.2 73 1.039 4.5 7
1 200 200 1.003 6.9 243 1.077 7.5 27
1 200 400 1.004 7.4 532 1.042 8.1 39

13 50 50 1.008 5.2 14 1.017 5.5 3
13 50 100 1.007 5.2 19 1.034 5.2 4
26 100 100 1.011 5.2 84 1.031 10.2 19
26 100 200 1.013 5.2 109 1.017 10.3 21
51 200 200 1.019 5.2 611 1.006 18.2 94
51 200 400 1.008 5.2 803 1.009 18.3 114

26 50 50 1.008 7.9 26 1.009 7.9 8
26 50 100 1.013 7.9 26 1.010 7.9 6
51 100 100 1.018 15.6 154 1.009 15.5 30
51 100 200 1.011 15.6 167 1.008 15.6 36

101 200 200 1.014 29.2 1128 1.000 29.4 194
101 200 400 1.015 28.9 1355 1.000 29.3 206

Results presented in Tables 1 and 2 indicate that the best two heuristics modi"ed and route-
"rst/cluster-second produce the best results, but modi"ed savings is the fastest. When q"R,
irrespective of p, modi"ed sweep produces the best results. When p"R, the top two algorithms
produce similar results, but route-"rst/cluster-second is faster than modi"ed sweep.
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Table 4
Suhum problem results

Season (p) Covering Modi"ed sweep Route-"rst/cluster-second
distance (c)
(km) Length (km) Routes Seconds Length (km) Routes Seconds

8 262.3 4 67 258.3 4 2
7 297.2 5 63 307.3 5 2
6 342.4 6 82 345.3 5 2

Dry (5) 5 450.6 7 124 435.9 7 2
4 494.1 8 128 498.3 8 2
3 582.3 10 209 593.4 10 3

8 187.6 3 23 189.3 3 1
7 206.3 4 17 205.3 4 1
6 220.9 4 20 231.2 4 1

Rainy (5) 5 288.5 5 28 289.3 5 1
4 285.0 5 29 303.1 6 1
3 278.4 6 41 291.4 6 1

8 202.0 3 150 217.8 2 3
7 237.3 3 155 237.8 3 3

Dry (10) 6 267.6 3 183 259.5 3 3
5 332.5 4 226 329.1 4 4
4 375.3 4 249 355.6 4 4
3 430.1 5 432 436.7 5 5

8 141.7 2 37 142.7 2 1
7 156.7 2 31 156.6 2 1
6 175.0 2 38 175.0 2 1

Rainy (10) 5 203.6 3 48 203.5 3 1
4 205.0 3 49 209.9 3 1
3 221.1 3 77 218.3 3 2

Table 3 compares the modi"ed sweep and route-"rst/cluster-second heuristics for several
combinations of D¹ D, D< D and D= D. One interesting observation is that modi"ed sweep produces
better results for small values of D¹ D and worse results for large large values of D¹ D. In terms of
computation times, route-"rst/cluster-second remains the best choice. Overall, computation times
grow with D< D, but seem una!ected by the size of D= D.

The Suhum problem was also solved only by modi"ed sweep and route-"rst/cluster-second.
Results presented in Table 4 indicate that both heuristics can solve this real-life problem within
reasonable time. In terms of solution quality, modi"ed sweep is slightly better, but route-
"rst/cluster-second is much faster. To illustrate, we depict in Figs. 4 and 5 the solutions obtained by
means of the route-"rst/cluster-second algorithm for the dry season, p"5, and c"5 and 8. It can
seen that more vehicles are required in the "rst case and these travel longer distances in order to
reach population centers.
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Fig. 4. Solution obtained for the Suhum district problem (c"5).

Fig. 5. Solution obtained for the Suhum district problem (c"8).
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5. Conclusion

We have developed three heuristics for the multi-vehicle covering tour problem, a location-
routing problem with several applications, namely in the delivery of medical services in rural areas.
The three heuristics, called modi"ed savings, modi"ed sweep and route-"rst/cluster-second, are
partly based on corresponding methods for the standard VRP. Extensive tests show that these
heuristics can solve instances of realistic size within reasonable computing times. The modi"ed
savings heuristics is the fastest but, in terms of solution quality, modi"ed sweep and route-"rst/
cluster-second are better by about 10%.
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