Chapter 7

Production, Capacity and Material Planning

Production, Capacity and Material Planning

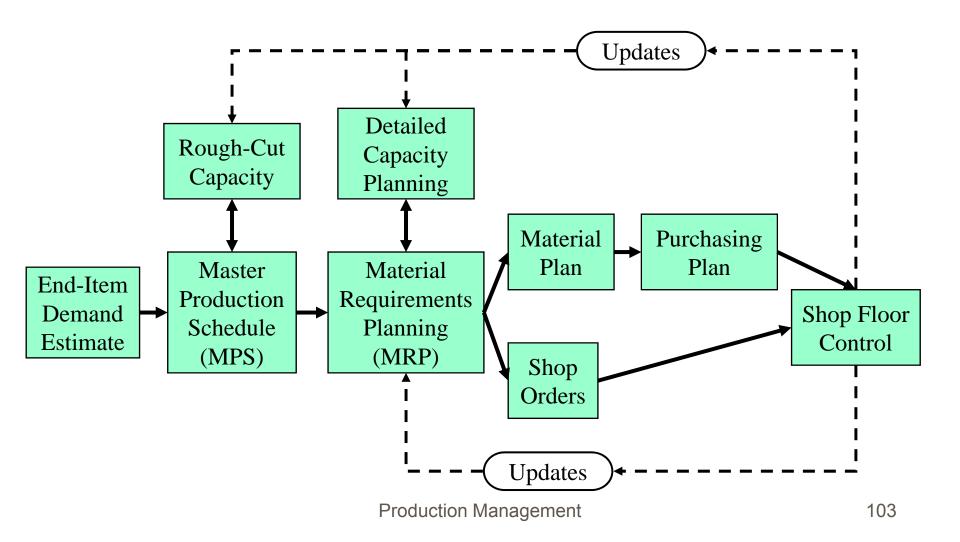
Production plan

quantities of final product, subassemblies, parts needed at distinct points in time

X To generate the Production plan we need:

- end-product demand forecasts

Master production schedule (MPS)


- delivery plan for the manufacturing organization
- exact amounts and delivery timings for each end product
- accounts for manufacturing constraints and final goods inventory

Production, Capacity and Material Planning

Based on the MPS:

- # rough-cut capacity planning
- Material requirements planning
 - determines material requirements and timings for each phase of production
 - detailed capacity planning

Production, Capacity and Material Planning

- Aggregate plan
- # demand estimates for individual end-items
- # demand estimates vs. MPS
 - inventory
 - capacity constraints
 - availability of material
 - production lead time

Market environments

- make-to-order (MTO)
- △ assemble-to-order (ATO)

MTS

- produces in batches
- minimizes customer delivery times at the expense of holding finishedgoods inventory
- production starts before demand is known precisely
- small number of end-items, large number of raw-material items

₩ MTO

- no finished-goods inventory
- customer orders are backlogged

₩ ATO

- automobile industry
- □ Final Assembly Schedule (FAS) at the end-item level (order driven)
- 2 lead times, for consumer orders only FAS lead time relevant

- **MPS- SIBUL manufactures phones**

 - one wall telephone D
 - MPS is equal to the demand forecast for each model

WEEKLY MPS			Jan				Feb			
(= FORECAS	Week				Week					
Product		1	2	3	4	5	6	7	8	
Model A		1000	1000	1000	1000	2000	2000	2000	2000	
Model B			500	500		350			350	
Model C		1500	1500	1500	1500	1000		1000	1000	
Model D		600		600			300	200		
weekly total		3100	3000	3600	2500	3350	2300	3200	3350	
monthly total		12200				12200				

MPS Planning - Example

- MPS plan for model A of the previous example:
- Make-to-stock environment
- No safety-stock for end-items

$$\boxtimes I_t = I_{t-1} + Q_t - \max\{F_t, O_t\}$$

- $\boxtimes I_t$ = end-item inventory at the end of week t
- ☑ Q_t = manufactured quantity to be completed in week t
- $\boxtimes F_t$ = forecast for week t

INITIAL DATA N	lodel A		Jan			Feb			
Current Invento	ory =		Week			Week Week			
1600		1	2	3	4	5	6	7	8
forecast Ft		1000	1000	1000	1000	2000	2000	2000	2000
orders Ot		1200	800	300	200	100			

Batch production: batch size = 2500

$$\boxtimes I_t = \max\{0, I_{t-1}\} - \max\{F_t, O_t\}$$

$$Q_t = \begin{cases} 0, & \text{if } I_t > 0\\ 2500, & \text{otherwise} \end{cases}$$

$$\boxtimes I_1 = \max\{0, 1600\} - \max\{1000, 1200\} = 400 > 0$$

$$\boxtimes I_2 = \max\{0, 400\} - \max\{1000, 800\} = -600 < 0 = > Q2 = 2500$$

$$\boxtimes I_2 = 2500 + 400 - \max\{1000, 800\} = 1900$$
, etc.

MPS			Jan				Feb			
Current Inventory =		Week				Week				
1600		1	2	3	4	5	6	7	8	
forecast Ft		1000	1000	1000	1000	2000	2000	2000	2000	
orders Ot		1200	800	300	200	100				
Inventory It	1600	400	1900	900	2400	400	900	1400	1900	
MPS Qt			2500		2500		2500	2500	2500	
ATP		400	1400		2200		2500	2500	2500	

★ Available to Promise (ATP)

$$\times$$
 ATP₁ = 1600 + 0 - 1200 = 400

$$\times$$
 ATP₂ = 2500 –(800 + 300) = 1400, etc.

- **⊠** Whenever a new order comes in, ATP must be updated
- **X** Lot-for-Lot production

MPS			Jan				Feb			
Current Invento	ory =	Week			Week					
1600		1	2	3	4	5	6	7	8	
forecast Ft		1000	1000	1000	1000	2000	2000	2000	2000	
orders Ot		1200	800	300	200	100				
Inventory It	1600	400	0	0	0	0	0	0	0	
MPS Qt		0	600	1000	1000	2000	2000	2000	2000	
ATP		400	0	700	800	1900	2000	2000	2000	

MPS Modeling

- □ differs between MTS-ATO and MTO
- additional complexity because of joint capacity constraints
- cannot be solved for each product independently

Make-To-Stock-Modeling

 Q_{ii} = production quantity of product i in period t

 I_{it} = Inventory of product i at end of period t

 D_{it} = demand (requirements) for product i in time period t

 a_i = production hours per unit of product i

h_i = inventory holding cost per unit of product i per time period

 A_i = set-up cost for product i

 G_t = production hours available in period t

 $y_{it} = 1$, if set-up for product i occurs in period t ($Q_{it} > 0$)

Make-To-Stock-Modeling

$$\min \sum_{i=1}^{n} \sum_{t=1}^{T} (A_{i}y_{it} + h_{i}I_{it})$$

$$I_{i,t-1} + Q_{it} - I_{it} = D_{it} \quad \text{for all (i,t)}$$

$$\sum_{i=1}^{n} a_{i}Q_{it} \leq G_{t} \quad \text{for all t}$$

$$Q_{it} - y_{it} \sum_{k=1}^{T} D_{ik} \leq 0 \quad \text{for all (i,t)}$$

$$Q_{it} \geq 0; I_{it} \geq 0; y_{it} \in \{0,1\}$$

- Assemble-To-Order Modeling
- # two master schedules
 - MPS: forecast-driven
 - FAS: order driven
- **# overage costs**
 - holding costs for modules and assembled products
- **# shortage costs**
 - inal product assemply based on available modules
 - no explicit but implicit shortage costs for modules
 - final products: lost sales, backorders

- m module types and *n* product types
- \triangle Q_{kt} = quantity of module k produced in period t
- \triangle g_{kj} = number of modules of type k required to assemble order j

Decision Variables:

- \triangle I_{kt} = inventory of module k at the end of period t
- \triangle $y_{jt} = 1$, if order j is assembled and delivered in period t; 0, otherwise
- \triangle h_k = holding cost
- \triangle π_{jt} = penalty costs, if order j is satisfied in period t and order j is due in period t' (t'<t); holding costs if t' > t

Assemble-To-Order Modeling

$$\min \sum_{k=1}^{m} \sum_{t=1}^{L} h_k I_{kt} + \sum_{j=1}^{n} \sum_{t=1}^{L} \pi_{jt} y_{jt}$$

subject to

$$I_{kt} = I_{k,t-1} + Q_{kt} - \sum_{j=1}^{n} g_{kj} y_{jt}$$
 for all (k, t)

$$\sum_{j=1}^{n} a_{j} y_{jt} \le G_{t}$$
 for all t

$$\sum_{t=1}^{L} y_{jt} = 1$$
 for all j

$$I_{kt} \ge 0; \quad y_{jt} \in \{0,1\}$$
 for all (j, k, t)

Production Management

K Capacity Planning

- □ Bottleneck in production facilities
- Rough-Cut Capacity Planning (RCCP) at MPS level
- feasibility
- detailed capacity planning (CRP) at MRP level

MPS:		January								
	Week									
Product	1	2	3	4						
Α	1000	1000	1000	1000						
В	-	500	500	-						
С	1500	1500	1500	1500						
D	600	-	600	-						

	Bill of cap	acity (min)	
	Assembly	Inspection	
Α	20	2	
В	24	2.5	
С	22	2	
D	25	2.4	

		Capacity requires (hr)								
		Week								
					Available					
					capacity					
	1	2	3	4	per week					
Assembly	1133	1083	1333!!	883	1200					
Inspection	107	104	128!!	83	110					

- weekly capacity requirements?
- ★ Assembly: 1000*20 + 1500*22 + 600*25 = 68000
 min = 1133,33 hr
- Inspection: 1000*2 + 1500*2 + 600*2,4 = 6440 min = 107,33 hr etc.
- available capacity per week is 1200 hr for the assembly work center and 110 hours
 for the inspection station;

- Infinite capacity planning (information providing)
- # finding a feasible cost optimal solution is a NP-hard problem
- # if no detailed bill of capacity is available: capacity planning using overall factors (globale Belastungsfaktoren)
 - required input:
 - MPS
 - standard hours of machines or direct labor required
 - △ historical data on individual shop workloads (%)
- **Example from Günther/Tempelmeier**
 - C133.3: overall factors

capacity planning using overall factors

		week				
product	1	2	3	4	5	6
Α	100	80	120	100	120	60
В	40	-	60	-	40	-

	work on	work on	Total	
product	critical machine	non-critical machine		
Α	1	2	3	
В	4	2	6	

historic capacity requirements on critical machines: 40% on machine a 60% on machine b

in total 500 working units are available per week, 80 on machine a and 120 on machine b;

Solution:

overall factor = time per unit x historic capacity needs

product A:

machine a: $1 \times 0.4 = 0.4$

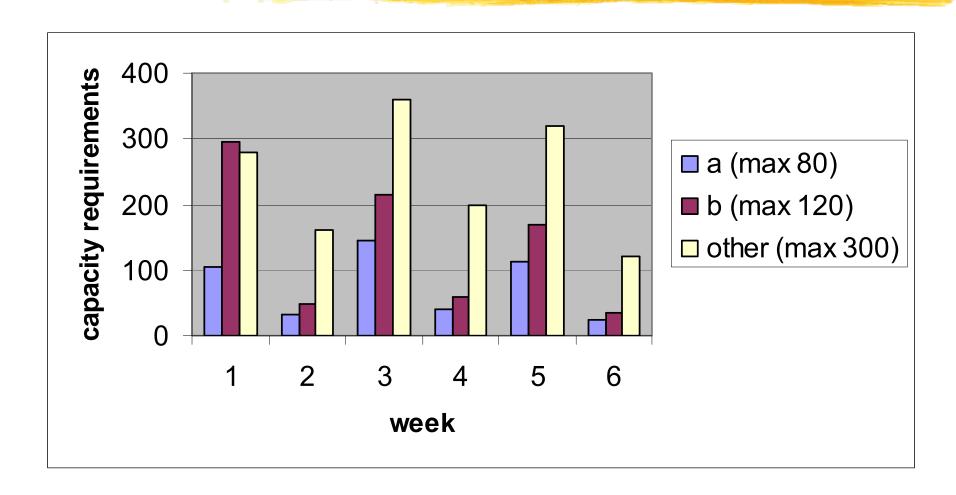
machine b: $1 \times 0.6 = 0.6$

product B:

machine a: $4 \times 0.4 = 1.6$

machine b: $4 \times 0.6 = 2.4$

capacity requirements: product A


machine						
	1	2	3	4	5	6
а	40	32	48	40	48	24
b	60	48	72	60	72	36
other	200	160	240	200	240	120

capacity requirements: product B

machine				weel	K	
	1	2	3	4	5	6
а	64	-	96	-	64	-
b	96	-	144	-	96	-
other	80	-	120	-	80	_

total capacity requirements

machine	1	2	week 3	5	6	
a	104	32	144	40	112	24
b	156	48	216	60	168	36
other	280	160	360	200	320	120

Capacity Modeling

- heuristic approach for finite-capacity-planning
- based on input/output analysis
- relationship between capacity and lead time
- G= work center capacity
- $\triangle R_t$ = work released to the center in period t
- $\triangle Q_t$ = production (output) from the work center in period t
- $\triangle W_t$ = work in process in period t
- $\square U_t$ = queue at the work center measured at the beginning of period t, prior to the release of work
- $\triangle L_f$ lead time at the work center in period t

$$Q_{t} = \min\{G, U_{t-1} + R_{t}\}$$

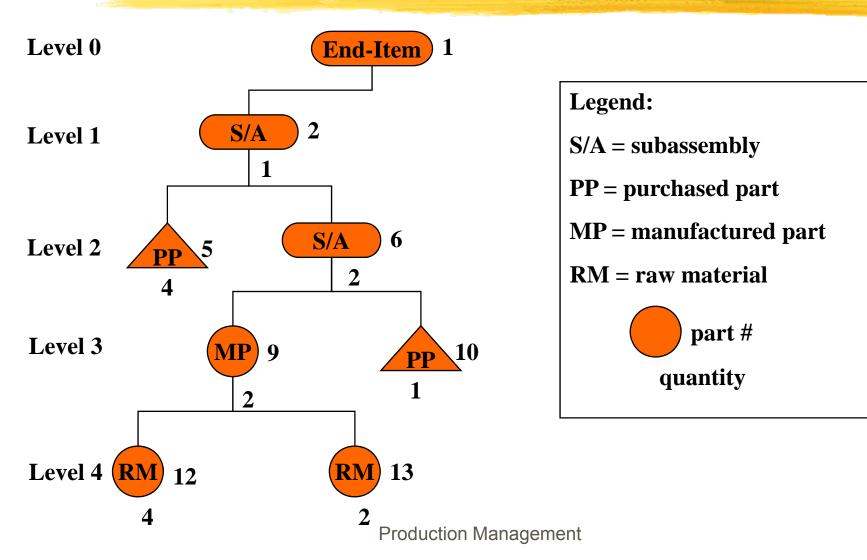
$$U_{t} = U_{t-1} + R_{t} - Q_{t}$$

$$W_{t} = U_{t-1} + R_{t} = U_{t} + Q_{t}$$

$$L_{t} = \frac{W_{t}}{G}$$

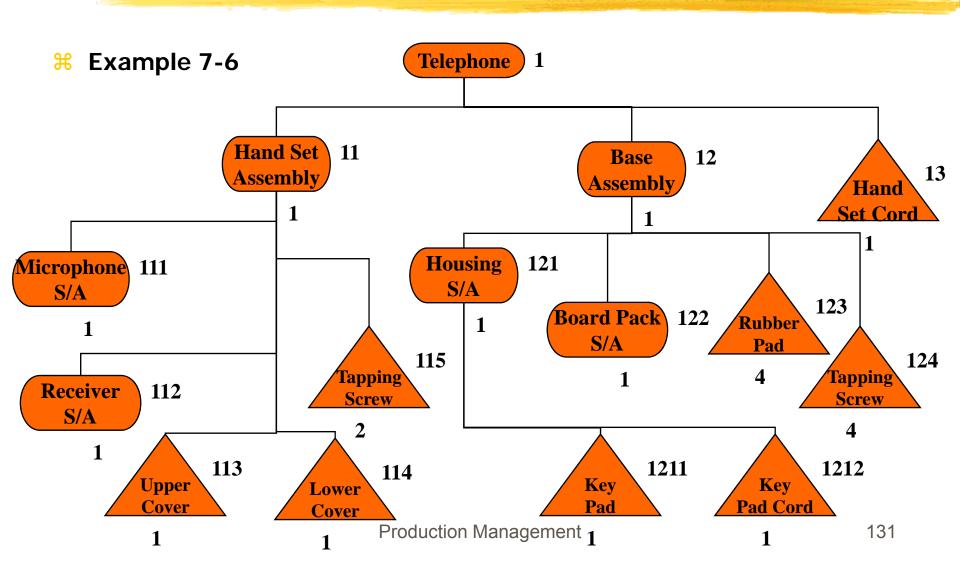
- Lead time is not constant
- **#** assumptions:
 - constant production rate
 - any order released in this period is completed in this period

Example


	Period									
	0	1	2	3	4	5	6			
G (hr/week)		36	36	36	36	36	36			
R_t (hours)		20	30	60	20	40	40			
Qt (hours)		30	30	36	36	36	36			
Ut (hours)	10	0	0	24	8	12	16			
W _t (hours)		30	30	60	44	48	52			
L _t (weeks)		0,83	0,83	1,67	1,22	1,33	1,44			

Inputs

- master production schedule
- inventory status record
- □ bill of material (BOM)


Outputs

- planned order releases
 - □ purchase orders(supply lead time)

MRP Process

- goal is to find net requirements (trigger purchase and work orders)
- explosion
 - **区** Example:
 - MPS, 100 end items
 - is yields gross requirements
 in the state of th
- netting
 - Net requirements = Gross requirements on hand inventory quantity on order
 - done at each level prior to further explosion
- offsetting
- lotsizing
 - batch size is determined

PART 11 (gross requirements given)

net requirements?

Planned order release?

Net requ.(week 2) = 600 - (1600 + 700) = -1700 =**Net requ.(week2)** = **0**

Net requ.(week 3) = 1000 - (1700 + 200) = -900 =>Net requ.(week3) = **0**

Net requ.(week 4) = 1000 - 900 = 100 etc.

	1				week				
	01122004	4	2	3		5	6	7	0
	current	1	2	3	4	3	6	1	8
gross									
requirements			600	1000	1000	2000	2000	2000	2000
scheduled									
receipts		400	700	200					
projected									
inventory									
balance	1200	1600	1700	900	0	0	0	0	0
net									
requirements					100	2000	2000	2000	2000
planned receipts									
planned order									
release									

Assumptions:

lot size: 3000

lead time: 2 weeks

	week								
	current	1	2	3	4	5	6	7	8
gross									
requirements			600	1000	1000	2000	2000	2000	2000
scheduled									
receipts		400	700	200					
projected inventory									
balance	1200	1600	1700	900	2900	900	1900	2900	900
net requirements					100	2000	2000	2000	2000
planned receipts					3000		_ 3000	3000	
planned order			4		*				
release			3000		3000	3000	•		

Multilevel explosion

part number	description	Qty
12	base assembly	1
121	housing S/A	1
123	rubber pad	4
1211	key pad	1

- □ part 12: fixed lot size of 3000

Part 12	current	1	2	3	4	5	6	7	8
gross requirements			600	1000	1000	2000	2000	2000	2000
scheduled receipts		400	400	400					
projected inventory balance	800	1200	1000	400	2400	400	1400	2400	400
net requirements		0	0	0	0	0	0	0	0
planned receipts		0	0	0	3000	0	3000	3000	0
planned order release	0	0	0	, 3000	0	, 3000	,3000	0	0
				x1		x 1	/x1		
Part 121	current	1	2	3	4	5	6	7	8
gross requirements	0	0	0	3000	0	3000	3000	0	0
scheduled receipts					x4		x4	x4	
projected inventory balance	500	500	500	0	0	0	0	0	0
net requirements		0	0	0	0	0	0	0	0
planned receipts		0	0	2500	0	3000	3000	0	0
planned order release		0	2500	0	3000	3000	0	0	0
			x1		x1	x1			
Part 123	current	1	2	3	4	5	6	7	8
gross requirements	0	0	0	12000	0	12000	12000	0	0
scheduled receipts			10000						
projected inventory balance	15000	15000	25000	13000	13000	1000	0	0	0
net requirements		0	0	0	0	0	0	0	0
planned receipts		0	0	0	0	0	11000	0	0
planned order release		0	0	0	0	11000	0	0	0
Part 1211	current	1	2	3	4	5	6	7	8
gross requirements	0	0	2500	0	₹3000	3 000	0	0	0
scheduled receipts		1500							
projected inventory balance	1200	2700	200	200	0	0	0	0	0
net requirements		0	0	0	0	0	0	0	0
planned receipts		0	0	0	2800	3000	0	0	0
planned order release		0	0	2800	3000	0	0	0	0

MRP Updating Methods

- regeneration method: the entire plan is recalculated
- net change method: recalculates requirements only for those items affected by change

	February				Updated MPS for February			
	Week				Week			
Product	5	6	7	8	5	6	7	8
Α	2000	2000	2000	2000	2000	2000	2300	1900
В	350	-	-	350	500	-	200	150
С	1000	-	1000	1000	1000	-	800	1000
D	-	300	200	-	-	300	200	-
	Net Change for February							
	Week							
Product	5	6	7	8				
Α			300	-100				
В	150		200	-200				
С			-200					
D								

Additional Netting procedures

- implosion:
 - □ opposite of explosion
- combining requirements:
 - process of obtaining the gross requirements of a common item
- pegging:
 - ⊠identify the item's end product

K Lot Sizing in MRP

- minimize set-up and holding costs
- can be formulated as MIP
- a variety of heuristic approaches are available

MIP Formulation

Indices:

i = 1...P label of each item in BOM (assumed that all labels are sorted with

respect to the production level starting from the end-items)

t = 1...T period t

m = 1...M resource m

Parameters:

 $\Gamma(i)$ set of immediate successors of item i

 $\Gamma^{1(i)}$ set of immediate predeccessors of item i

 s_i setup cost for item i

 c_{ij} quantity of itme / required to produce item j

 h_i holding cost for one unit of item i

 a_{mi} capacity needed on resource m for one unit of item i

 b_{mi} capacity needed on resource m for the setup process of item i

 L_{mt} available capacity of resource m in period t

 oc_m overtime cost of resource m

G large number, but as small as possible (e.g. sum of demands)

 D_{it} external demand of item *i* in period *t*

Decision variables:

 x_{it} deliverd quantity of item *i* in period t

 I_{it} inventory level of item *i* at the end of period *t*

 O_{mt} overtime hours required for machine m in period t

 y_{it} binary variable indicating if item *i* is produced in period t (=1) or not (=0)

Equations:

$$\min \sum_{i=1}^{P} \sum_{t=1}^{T} (s_i y_{it} + h_i I_{it}) + \sum_{t=1}^{T} \sum_{m=1}^{M} oc_m O_{mt}$$

$$I_{i,t} = I_{i,t-1} + x_{i,t} - \sum_{j \in \Gamma(i)} c_{ij} x_{jt} - D_{it} \quad \forall i,t \qquad x_{it} - G y_{it} \leq 0 \quad \forall i,t$$

$$\sum_{i=1}^{P} (a_{mi}x_{it} + b_{mi}y_{it}) \le L_{mt} + O_{mt} \quad \forall m, t \quad x_{it}, I_{it}, O_{mt} \ge 0, \quad y_{it} \in \{0,1\}$$

$$\forall i, m, t$$

Multi-Echelon Systems

- Multi-echelon inventory
- each level is referred as an echelon
- "total inventory in the system varies with the number of stocking points"
- Modell (Freeland 1985):
 - ✓ demand is insensitive to the number of stocking points
 - ✓ demand is normally distributed and divided evenly among the stocking points,

 - ☑a (Q,R) inventory policy is used
 - $\boxtimes \beta$ -Service level (fill rate) is applied
 - ☑ Q is determined from the EOQ formula

Reorder point in (Q,R) policies:

i: total annual inventory costs (%)

c: unit costs

△ A: ordering costs

 $rac{r}{2}$:lead time

 $riangleright\sigma_{ au}$: variance of demand in lead time

lpha given a fill rate eta choose z(eta) such that:

$$L(z) = \int_{z}^{\infty} (y - z) \phi(y) dy = \frac{(1 - \beta)Q}{\sigma_{\tau}}$$

 ϕ density of N(0,1) distribution; L(z): standard loss function

$Unit\ Normal\ Linear\ Loss\ Integral\ L(Z)$

	.00	.02	.04	.06	.08
Z	.00	.02	.04	.00	.00
0.00	.3989	.3890	.3793	.3697	.3602
0.10	.3509	.3418	.3329	.3240	.3154
0.20	.3069	.2986	.2904	.2824	.2745
0.30	.2668	.2592	.2518	.2445	.2374
0.40	.2304	.2236	.2170	.2104	.2040
0.50	.1978	.1917	.1857	.1799	.1742
0.60	.1687	.1633	.1580	.1528	.1478
0.70	.1429	.1381	.1335	.1289	.1245
0.80	.1202	.1160	.1120	.1080	.1042
0.90	.1004	.0968	.0933	.0899	.0866
1.00	.0833	.0802	.0772	.0742	.0714
1.10	.0686	.0660	.0634	.0609	.0585
1.20	.0561	.0539	.0517	.0496	.0475
1.30	.0456	.0437	.0418	.0401	.0383
1.40	.0367	.0351	.0336	.0321	.0307
1.50	.0293	.0280	.0268	.0256	.0244
1.60	.0233	.0222	.0212	.0202	.0192
1.70	.0183	.0174	.0166	.0158	.0150
1.80	.0143	00136	.0129	.0122	.0116
1.90	.0110	.0104	.0099	.0094	.0089
2.00	.0084	.0080	.0075	.0071	.0067
2.10	.0063	.0060	.0056	.0053	.0050
2.20	.0047	.0044	.0042	.0039	.0037
2.30	.0036	.0034	.0032	.0030	.0028
2.40	.0027	.0026	.0024	.0023	.0022
2.50	.0021	.0018	.0017	.0016	.0016

- **Safety stock:** $S = Z \cdot \sigma_{\tau}$
- lpha Reorder point: $R = \overline{D}_{\tau} + z \cdot \sigma_{\tau}$
- \Re Order quantity: $Q = EOQ = \sqrt{\frac{2 \overline{A} \overline{D}}{ic}}$
- **#** Average inventory: $\bar{I}(1) = \frac{Q}{2} + s$

 $\overline{I}(n)$ = average inventory for n stocking points

$$\bar{I}(1) = \frac{1}{2} \sqrt{\frac{2A \overline{D}}{ic}} + z \sigma_{\tau}$$

for two stocking points:

demand at each point: D/2

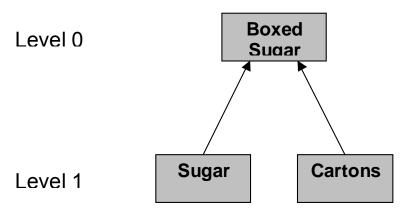
variance of lead - time demand: $\sigma_{\tau}^2/2$

standard deviation is : $\sigma_{\tau} / \sqrt{2}$

average inventory at each stocking point is:

$$\frac{1}{2}\sqrt{\frac{2A\overline{D}/2}{ic}} + \frac{z\sigma_{\tau}}{\sqrt{2}} = \frac{1}{\sqrt{2}}(Q/2 + s)$$

the average inventory for two stocking point is:


$$\bar{I}(2) = 2\left[\frac{1}{\sqrt{2}}(Q/2+s)\right] = \sqrt{2}(Q/2+s) = \sqrt{2} \cdot \bar{I}(1)$$

$$\bar{I}(n) = \sqrt{n} \cdot \bar{I}(1)$$

for each level the safety stock is : s/\sqrt{n} the total safety stock is $\sqrt{n} \cdot s$

Example: At the packaging department of a sugar refinery:

A very-high-grade powdered sugar:

Sugar-refining lead time is five days;

Production lead time (filling time) is negligible;

Annual demand: D = 800 tons and σ = 2,5

Lead-time demand is normally distributed with $D\tau$ = 16 tons and $\sigma\tau$ = 3,54 tons

Fill rate = 95%

Inventory at level 0 and 1? Safety stock?

$$Q = \sqrt{\frac{2 AD}{ic}} = \sqrt{\frac{2 x 50 x 800}{800}} = 10 \text{ tons}$$

$$\beta = 0.95 \Rightarrow z = 0.71$$

 $s = z_{0\tau} = 0.71x3.54 = 2.51 \text{ tons}$

Suppose we keep inventory in level 0 only, i.e., n = 1:

$$I(1) = \frac{Q}{2} + s = \frac{10}{2} + 2,51 = 7,51$$
tons

Suppose inventory is maintained at both level 0 and level 1, i.e., n = 2:

$$I(2) = \sqrt{2I(1)} = 10,62 \ tons$$

The safety stock in each level is going to be:

$$\frac{s}{\sqrt{2}} = \frac{2,51}{\sqrt{2}} = 1,77 tons$$

MRP as Multi-Echelon Inventory Control

- continuous-review type policy (Q,R)
- △ hierarchy of stocking points (installation)
- installation stock policy
- echelon stock (policy): installation inventory position plus all downstream stock
- MRP:

 - bases ordering decisions on projected future installation inventory level

- ☑ All demands and orders occur at the beginning of the time period
- ✓ orders are initiated immediately after the demands, first for the final items and then successively for the components

- $\boxtimes \tau_i$ = lead time for item i
- \boxtimes s_i = safety stock for item I
- $\boxtimes R_i$ = reorder point for item I
- $\boxtimes Q_i$ =Fixed order quantity of item i
- ∑ D_{it} = external requirements of item i in period t

Installation stock policies (Q,Ri) for MRP:

- \triangle a production order is triggered if the installation stock minus safety stock is insufficient to cover the requirements over the next τ_i periods
- an order may consist of more than one order quantity Q
- \triangle if lead time $\tau_i = 0$, the MRP is equal to an installation stock policy.
- Safety stock = reorder point

Echelon stock policies (Q,Re) for MRP:

- Consider a serial assembly system
- Installation 1 is the downstream installation (final product)

- \triangle I_i = echelon inventory position at installation i (at the same moment)

$$H_i = W_i + W_{i-1} + ... W_1$$

- \triangle a multi-echelon (Q,R) policy is denoted by (Q_i,R_i^e)
- R_ie gives the reorder point for echelon inventory at i

$$R_1^e = S_1 + D\tau_1$$

 $R_i^e = S_i + D\tau_i + R_{i-1}^e + Q_{i-1}$

Example:

38 Two-level system, 6 periods

$$I_1^0 = 18$$
, $I_2^0 = 38$, $R_1^e = 20$, $R_2^e = 34$, $Q_1 = 10$, $Q_2 = 30$ \mathbb{H} D = 2 (Item 1), $\tau_1 = 1$, $\tau_2 = 2$

H

	Period	1	2	3	4	5	6
	Demand	2	2	2	2	2	2
Item 1	Level w1	18	26	24	22	20	28
item i	Production	10	0	0	0	10	0
Item 2	Level w2	10	10	10	10	30	10
ileiii Z	Production	0	0	30	0	0	0

Suppose now that five units were demanded in period 2:

	Period	2	3	4	5	6	7
	Demand	5	2	2	2	2	2
Item 1	Level w1	23	21	19	27	25	23
item i	Production	0	0	10	0	10	0
Item 2	Level w2	10	10	30	30	30	30
item 2	Production	30	0	0	0	0	0

- **X** Lot Size and Lead Time
- **#** batching effect
 - an increase in lot size should increase lead time
- **#** saturation effect
- expected lead time can be calculated using models from queueing theory (M/G/1)

$$L = lead time$$

$$L = \frac{(\lambda/\mu)^2 + \lambda^2 \sigma^2}{2\lambda(1-\lambda/\mu)} + \frac{1}{\mu}$$

 λ = mean arrival rate

 μ = mean service rate

 σ^2 = service time variance

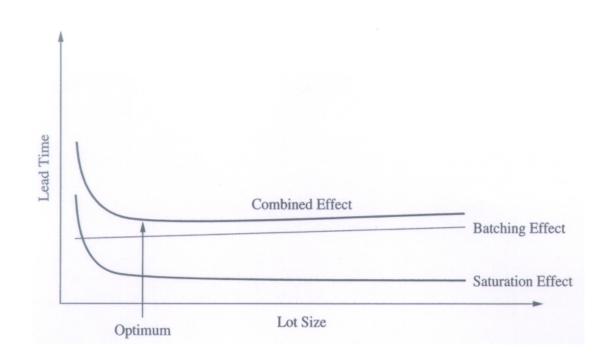
```
D_{j} = demand per period for product j

t_{j} = unit - production time for product j

S_{j} = set - up time for product j

Q_{j} = lotsize for product j
```

mean arrival rate of batches:


$$\lambda = \sum_{j=1}^{n} \lambda_{j} = \sum_{j=1}^{n} \frac{D_{j}}{Q_{j}}$$

mean service time:

$$\frac{1}{\mu} = \frac{\sum_{j=1}^{n} \lambda_{j} (S_{j} + t_{j} Q_{j})}{\sum_{j=1}^{n} \lambda_{j}}$$

service - time variance :

$$\sigma^{2} = \frac{\sum_{j=1}^{n} \lambda_{j} (S_{j} + t_{j} Q_{j})^{2}}{\sum_{j=1}^{n} \lambda_{j}} - \left(\frac{1}{\mu}\right)^{2}$$

Material Planning

Work to do: 7.7ab, 7.8, 7.10, 7.11, 7.14 (additional information: available hours: 225 (Paint), 130 (Mast), 100 (Rope)), 7.15, 7.16, 7.17, 7.31-7.34