

Supply Chain Planning Matrix

	procurement	roduction	istribution	Sales						
long- term	Strategic Network Planning									
mid- term		Master Planning								
	Material	Production Planning	Distribution Planning	Planning						
short- term	Requirements Planning	Scheduling	Transport Planning	Demand Fulfilment & ATP						

Supply Chain Planning Matrix

Example:

- △ one product (plastic case)
- △ two injection molding machines, 550 parts/hour
- 🗠 one worker, 55 parts/hour
- △ steady sales 80.000 cases/month
- △ 4 weeks/month, 5 days/week, 8h/day
- △ how many workers?

in real life constant demand is rare

- 🗠 change demand
- produce a constant rate anyway
- vary production

Influencing demand

🗠 do not satisfy demand

△ shift demand from peak periods to nonpeak periods

produce several products with peak demand in different period

Hanning Production

Production plan: how much and when to make each product

- rolling planning horizon
- 🔼 long range plan

🗠 intermediate-range plan

⊠units of measurements are aggregates

⊠ product family

⊠plant department

⊠ changes in workforce, additional machines, subcontracting, overtime,...

△ Short-term plan

Aspects of Aggregate Planning

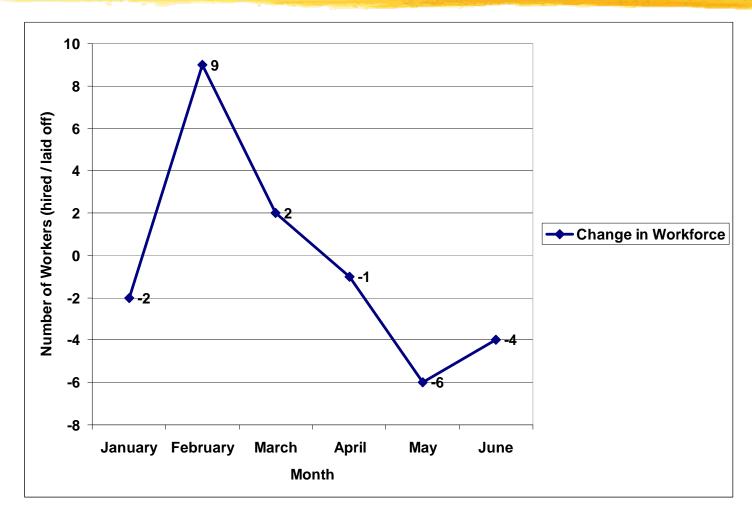
- Capacity: how much a production system can make
- Aggregate Units: products, workers,...
- 🗠 Costs
 - ☑ production costs (economic costs!)
 ☑ inventory costs (holding and shortage)
 - ≥ inventory costs(holding and shortage)
 - ⊠capacity change costs

Spreadsheet Methods

EXERCITE SET SET UP: HEAD HEAD

- Precision Transfer, Inc. Produces more than 300 different precision gears (the aggregation unit is a gear!).
- Last year (=260 working days) Precision made 41.383 gears of various kinds with an average of 40 workers.
- 41.383 gears per year
- \bigtriangleup 40 x 260 worker-days/year = 3,98 -> 4 gears/ worker-day

Aggregate demand forecast for precision gear:

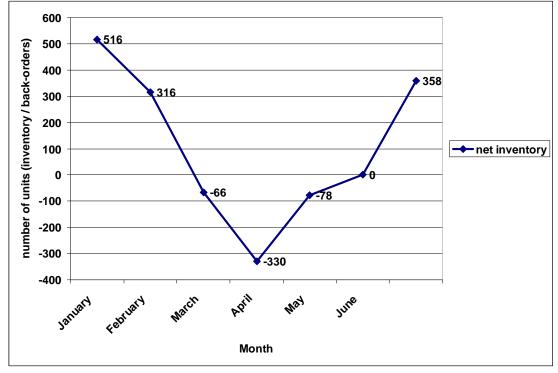

Month	January	February	March	April	Мау	June	Total
Demand	2760	3320	3970	3540	3180	2900	19.670

△ holding costs: \$5 per gear per month

- └─ backlog costs: \$15 per gear per month
- △ hiring costs: \$450 per worker
- △ lay-off costs: \$600 per worker
- △ wages: \$15 per hour (all workers are paid for 8 hours per day)
- △ there are currently 35 workers at Precision
- currently no inventory

Zero Inventory Plan

produce exactly amount needed per period
 adapt workforce


K Level Work Force Plan

- backorders allowed
- △ constant numbers of workers
- demand over the planning horizon
- ☐ gears a worker can produce over the horizon

19670/(4x129)=38,12 -> 39 workers are always needed

Inventory: January: 3276 - 2760 = 516

- February: 516 + 3120 3320
- March: 316 + 3588 3670 = -66! -Backorders: 66 x \$15 = \$990

🔀 no backorders are allowed

workers= cumulative demand/(cumulative days x units/workers/day)

△ January: 2760/(21 x 4) = 32,86 -> 33 workers

➢ February: (2760+3320)/[(21+20) x 4] = 37,07 -> 38 workers.

△ March: 10.050/(64 x 4) =>40 workers

△ May: 16.770/(107 x 4) => 40 workers

△ June: 19670/(129 x 4) => 39 workers

Example Mixed Plan

The number of workers used is an educated guess based on the zero inventory and level work force plans!

Spreadsheet Methods Summary

	Zero-Inv.	Level/BO	Level/No BO	Mixed
Hiring cost	4950	1800	2250	3150
Lay-off cost	7800	0	0	4200
Labor cost	59856	603720	619200	593520
Holding cost	0	4160	6350	3890
BO cost	0	7110	0	990
Total cost	611310	616790	627800	605180
Workers	33	39	40	35

- Elinear Programming Approaches to Aggregate Planning Parameters:
 - T... Planning horizon length
 - t ... Index of periods, t=1,2,..., T
 - D_t ... forcasted number of units demanded in period t
 - n_t ...number of units that can be made by one worker in period t
 - C_t^P ...cost to produce one unit in period t
 - C_t^{W} ... cost of one worker in period t Production Management

 C_t^H ... cost to hire one worker in period t

 C_t^L ...cost to lay off one worker in period t

 C_t^I ... cost to hold one unit in inventory in period t

 C_t^B ...cost to backorder one unit in period t

Decision Variables:

 P_t ...number of units produced in period t

 W_t ...number of workers available in period t

 H_t ...number of workers hired in period t

 L_t ...number of workers laid off in period t

 I_t ...number of units held in inventory in period t

 B_t ...number of units backordered in period t

Constraints: work, Capacity, force, material

 $P_{t} \le n_{t}W_{t} \qquad t = 1, 2, ..., T$ $W_{t} = W_{t-1} + H_{t} - L_{t} \qquad t = 1, 2, ..., T$

net inventory this period = net inventory last period + production this period - demand this period $I_t - B_t = I_{t-1} - B_{t-1} + P_t - D_t$

Costs

$$\sum_{t=1}^{T} (C_{t}^{P}P_{t} + C_{t}^{W}W_{t} + C_{t}^{H}H_{t} + C_{t}^{L}L_{t} + C_{t}^{I}I_{t} + C_{t}^{B}B_{t})$$

Example: Precision Transfer

Planning horizon: 6 months T= 6

 \bigtriangleup Costs do not vary over time C^P_t = 0

 \square d_t: days in month t

$$\sim C_t^W = $120d$$

$$\sim C_{t}^{L} = $600$$

⊡ C_t[⊥] = \$5

△ We assume that no backorders are allowed!

no production costs and no backorder costs are included!

🛆 Demand

⊠January 2760	February 3320		•	May 3180	June 2900	Total 19.670
	Product	tion Mana	agement			62

Linear Program Model for Precision Transfer

Minimize

$$2520W_1 + 2400W_2 + 2760W_3 + 2520W_4 + 2640W_5 + 2640W_6 + 450(H_1 + H_2 + H_3 + H_4 + H_5 + H_6) + 600(L_1 + L_2 + L_3 + L_4 + L_5 + L_6) + 5(I_1 + I_2 + I_3 + I_4 + I_5 + I_6)$$

subject to (Production-capacity constraints)

 $P_1 \le 84W_1, P_2 \le 80W_2, P_3 \le 92W_3, P_4 \le 84W_4, P_5 \le 88W_5, P_6 \le 88W_6,$

(Work-force constraints)

$$W_1 = 35 + H_1 - L_1, \quad W_2 = W_1 + H_2 - L_2, \quad W_3 = W_2 + H_3 - L_3,$$

$$W_4 = W_3 + H_4 - L_4, \quad W_5 = W_4 + H_5 - L_5, \quad W_6 = W_5 + H_6 - L_6,$$

(Inventory-balance constraints)

$$I_1 = P_1 - 2760, \quad I_2 = I_1 + P_2 - 3320, \quad I_3 = I_2 + P_3 - 3970,$$

$$I_4 = I_3 + P_4 - 3540, \quad I_5 = I_4 + P_5 - 3180, \quad I_6 = I_5 + P_6 - 2900 \, (= 0),$$

(Non-negativity constraints)

$$P_1, P_2, P_3, P_4, P_5, P_6, W_1, W_2, W_3, W_4, W_5, W_6, H_1, H_2, H_3, H_4, H_5, H_6, L_1, L_2, L_3, L_4, L_5, L_6, I_1, I_2, I_3, I_4, I_5, I_6 \ge 0$$

$$63$$

Example 1 LP solution (total cost = \$600 191,60)

	Production	Inventory	Hired	Laid off	Workers
January	2940,00	180,00	0,00	0,00	35,00
February	3232,86	92,86	5,41	0,00	40,41
March	3877,14	0,00	1,73	0,00	42,14
April	3540,00	0,00	0,00	0,00	42,14
Мау	3180,00	0,00	0,00	6,01	36,14
June	2900,00	0,00	0,00	3,18	32,95

Rounding LP solution

	January	February	March	April	May	June	Total
Days	21	20	23	21	22	22	129
Units/Worker	84	80	92	84	88	88	516
Demand	2760	3320	3970	3540	3180	2900	19670
Workers	35	41	42	42	36	33	229
Capacity	2940	3280	3864	3528	3168	2904	19684
Capacity - Demand	180	-40	-106	-12	-12	4	14
Cumulative Difference	180	140	34	22	10	14	400
Produced	2930	3280	3864	3528	3168	2900	19670
Net inventory	170	130	24	12	0	0	336
Hired	0	6	1	0	0	0	7
Laid Off	0	0	0	0	6	3	9
Costs	89050	101750	116490	105900	98640	88920	600750

Practical Issues

△ 100.000 variables and 40.000 constraints
△ LP/MIP Solvers: CPLEX, XPRESS-MP, …

Extensions

🔼 Bounds

$$I_{t} \leq I_{t}^{U}$$
$$I_{t}^{L} \leq I_{t} \leq I_{t}^{U}$$
$$L_{t} \leq 0.05W_{t}$$

Training $W_t = W_{t-1} + H_{t-1} - L_t$

Transportation Models

supply points: periods, initial inventory
demand points: periods, excess demand, final inventory

 $n_t W_t$ = capacity during period t D_t = forecasted number of units demanded in period t C_t^P = the cost to produce one unit in period t C_t^I = the cost to hold one unit in inventory in period t

t	1	2	3
capacity n _t W _t	350	300	350
demand	200	300	400
production costs	10	11	12
holding costs	2	2	2

initial inventory: 50 final inventory: 75

	1		2	2	3	6	Enc	U	Exc		Available
			_				inver	ntory	capa	acity	capacity
Beginning		0		2		4		6		0	50
inventory	50										
Period 1		10		12		14		16		0	350
	150				50		75		75		
Period 2		-		11		13		15		0	300
T enou z			300								
Period 3		-		-		12		14		0	350
	-				350						
Demand	20)0	30)0	4()0	7	5	7	5	1050

☐ Extension:

t	1	2	3
capacity n _t W _t	350	350	300
demand	400	300	400
production costs	10	11	12
holding costs	2	2	2

overtime: overtime capacity is **90, 90** and **75** in period 1, 2 and 3;

⊠ overtime costs are **\$16**, **\$18** and **\$ 20** for the three periods respectively;

backorders:units can be backordered at a cost of **\$5** per unit-month; production in period 2 can be used to satisfy demand in period 1

		-	1	2		3	5	Enc inver	Ŭ	Exc capa		Available capacity
Beginning	g inventory		0	25	2	25	4		6		0	50
Period 1	Regular time	350	10		12		14		16		0	350
i enou i	Overtime	50	16		18		20		22	40	0	90
Period 2	Regular time		16	275	11		13	75	15		0	350
	Overtime		23		18		20		22	90	0	90
Period 3	Regular time		22		17	300	12		14		0	300
	Overtime		30		25	75	20		22		0	75
Dem	nand	4()0	30	00	40	0	7	5	13	30	1305

Bisaggregating Plans

aggregate units are not actually produced, so the plan should consider individual products

disaggregation

master production schedule

H Questions:

△ In which order should individual products be produced?

 \boxtimes e.g.: shortest run-out time $R_i = I_i / D_i$

△ How much of each product should be produced?

⊠e.g.: balance run-out time

H Advanced Production Planning Models

Multiple Products
 same notation as before

add subscript i for product i

○ Objective function

$$\min \sum_{t=1}^{T} \left(C_t^W W_t + C_t^H H_t + C_t^L L_t + \sum_{i=1}^{N} C_{it}^P P_{it} + C_{it}^I I_{it} \right)$$

subject to

$$\sum_{i=1}^{N} \left(\frac{1}{n_{it}}\right) P_{it} \le W_t \qquad t = 1, 2, \dots, T$$

$$W_{t} = W_{t-1} + H_{t} - L_{t} \qquad t=1,2,...,T$$

$$I_{it} = I_{it-1} + P_{it} - D_{it} \qquad t=1,2,...,T; i=1,2,...,N$$

 $P_{it,}W_t, H_t, L_t, I_{it} \ge 0$ t=1,2,...,T; i=1,2,...,N

K Computational Effort:

△ 10 products, 12 periods: 276 variables, 144 constraints

△ 100 products, 12 periods: 2436 variables, 1224 constaints

Example: Carolina Hardwood Product Mix

⊠ Carolina Hardwood produces 3 types of dining tables;

There are currently 50 workers employed who can be hired and laid off at any time;

☑ Initial inventory is 100 units for table1, 120 units for table 2 and 80 units for table 3;

t	1	2	3	4
costs of hiring	420	410	420	405
costs of lay off	800	790	790	800
costs per worker	600	620	620	610

☑ The number of units that can be made by one worker per period:

t	Table 1	Table 2	Table 3
1	200	300	260
2	220	310	255
3	210	300	250
4	200	290	265

E Forecasted demand, unit cost and holding cost per unit are:

	Demand			Unit costs			Holding costs		
t	Table 1	Table 2	Table 3	Table 1	Table 2	Table 3	Table 1	Table 2	Table 3
1	3500	5400	4500	120	150	200	10	12	12
2	3100	5000	4200	125	150	210	9	11	12
3	3000	5100	4100	120	145	205	10	12	11

Minimize

 $\begin{aligned} & 600W_1 + 620W_2 + 620W_3 + 610W_4 + 420H_1 + 410H_2 + 420H_3 + 405H_4 + 800L_1 + 790L_2 + 790L_3 + 800L_4 \\ & + 120P_{11} + 150P_{21} + 200P_{31} + 125P_{12} + 150P_{22} + 210P_{32} + 120P_{13} + 145P_{23} + 205P_{33} + 125P_{14} + 148P_{24} + 205P_{34} \\ & + 10I_{11} + 12I_{21} + 12I_{31} + 9I_{12} + 11I_{22} + 12I_{32} + 10I_{13} + 12I_{23} + 11I_{33} + 10I_{14} + 11I_{24} + 11I_{34} \\ & \text{subject to} \end{aligned}$

$$\begin{aligned} &\frac{P_{11}}{200} + \frac{P_{21}}{300} + \frac{P_{31}}{260} \leq W_1, \quad \frac{P_{12}}{220} + \frac{P_{22}}{310} + \frac{P_{32}}{255} \leq W_2, \\ &\frac{P_{13}}{210} + \frac{P_{23}}{300} + \frac{P_{33}}{250} \leq W_3, \quad \frac{P_{14}}{200} + \frac{P_{24}}{290} + \frac{P_{34}}{265} \leq W_4, \\ &W_1 = 50 + H_1 - L_1, \quad W_2 = W_1 + H_2 - L_2, \quad W_3 = W_2 + H_3 - L_3, \quad W_4 = W_3 + H_4 - L_4 \\ &I_{11} = 100 + P_{11} - 3500, \quad I_{21} = 120 + P_{21} - 5400, \quad I_{31} = 80 + P_{31} - 4500, \\ &I_{12} = I_{11} + P_{12} - 3100, \quad I_{22} = I_{21} + P_{22} - 5000, \quad I_{32} = I_{31} + P_{32} - 4200, \\ &I_{13} = I_{12} + P_{13} - 3000, \quad I_{23} = I_{22} + P_{23} - 5100, \quad I_{33} = I_{32} + P_{33} - 4100, \\ &I_{14} = I_{13} + P_{14} - 3400, \quad I_{24} = I_{23} + P_{24} - 5500, \quad I_{34} = I_{33} + P_{34} - 4600, \end{aligned}$$

 $P_{it}, I_{it}, W_t, H_t, L_t, I_{it} \ge 0$

Hultiple Products and Processes

- T = horizon length, in periods
- N = number of products
- K = number of resource types
- t =index of periods, t = 1, 2, ..., T
- $i = \text{ index of products}, i = 1, 2, \dots, N$
- $k = \text{ index of resource types, } k = 1, 2, \dots, K$
- D_{it} = forecasted number of units demanded for product *i* in period *t*
- m_i = number of different processes available to make product *i*
- A_{kt} = amount of resource k available in period t
- a_{ijk} = amount of resource k required by one unit of product i if produced by process j
- $C_{iit}^{P} = \text{cost to produce one unit of product } i \text{ using process } j \text{ in period } t$
- $C_{it}^{I} = \text{cost to hold one unit of product } i \text{ in inventory for period } t$

The decision variables are

 P_{ijt} = number of units of product *i* produced by process *j* in period *t*

 I_{it} = number of units of product *i* held in inventory at the end of period *t*

The linear programming formulation is

Minimize
$$\sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{j=1}^{m_i} (C_{ijt}^P P_{ijt} + C_{it}^I I_{it})$$

subject to

$$\sum_{i=1}^{N} \sum_{j=1}^{m_{i}} a_{ijk} P_{ijt} \leq A_{kt} \qquad t = 1, 2, \dots, T; \quad k = 1, 2, \dots, K$$
$$I_{it} = I_{it-1} + \sum_{j=1}^{m_{i}} P_{ijt} - D_{it} \qquad t = 1, 2, \dots, T; \quad i = 1, 2, \dots, N$$

$$P_{ijt}, I_{it} \ge 0 \qquad t = 1, 2, \dots, T; \quad i = 1, 2, \dots, N;$$

$$j = 1, 2, \dots, m_i$$

Example: Cactus Cycles process plan

CC produces 2 types of bicycles, street and road;

Estimated demand and current inventory:

t	initial inventory	1	2	3
street b.	100	1000	1050	1100
road b.	50	500	600	550

available capacity(hours) and holding costs per bike:

	Capacity	(hours)	Holding		
t	Machine	Worker	Street	Road	
1	8600	17000	5	6	
2	8500	16600	6	7	
3	8800	17200	5	7	

process costs (process1, process2) and resource requirement per unit:

	Proces	s1	Process2		
t	Street	Road	Street	Road	
1	72	85	80	90	
2	74	88	78	95	
3	75	84	78	92	
Machine hours required	5	8	4	6	
Worker hours required	10	12	8	9	

Minimize

 $\begin{aligned} &72P_{111} + 80P_{121} + 85P_{211} + 90P_{221} \\ &+ 74P_{112} + 78P_{122} + 88P_{212} + 95P_{222} \\ &+ 75P_{113} + 78P_{123} + 84P_{213} + 92P_{223} \\ &+ 5I_{11} + 6I_{12} + 5I_{13} + 6I_{21} + 7I_{22} + 7I_{23} \end{aligned}$ subject to

 $5P_{111} + 4P_{121} + 8P_{211} + 6P_{221} \le 8600, \quad 10P_{111} + 8P_{121} + 12P_{211} + 9P_{221} \le 17000, \\5P_{112} + 4P_{122} + 8P_{212} + 6P_{222} \le 8500, \quad 10P_{112} + 8P_{122} + 12P_{212} + 9P_{222} \le 16600, \\5P_{113} + 4P_{123} + 8P_{213} + 6P_{223} \le 8800, \quad 10P_{113} + 8P_{123} + 12P_{213} + 9P_{223} \le 17200, \\$

 $I_{11} = 100 + P_{111} + P_{121} - 1000, \quad I_{21} = 50 + P_{211} + P_{221} - 500,$ $I_{12} = I_{11} + P_{112} + P_{122} - 1050, \quad I_{22} = I_{21} + P_{212} + P_{222} - 600,$ $I_{13} = I_{12} + P_{113} + P_{123} - 1100, \quad I_{23} = I_{22} + P_{213} + P_{223} - 550,$

 $P_{ijt}, I_{it} \ge 0$ t = 1, 2, 3; i = 1, 2; j = 1, 2

Solution: Objective Function value = \$368,756.25

	S	treet E	Bicycle	Road Bicycle			
	Process			Process			
t	1	2	Inventory	1	2	Inventory	
1	900	0	0	118,75	525	193,75	
2	1050	0	0	406,25	0	0	
3	0	1100	0	550	0	0	

- Hopp/Spearman, S. 522-540Notation:
- X_{it} ... amount of product i produced in period t
- $r_i \dots$ net profit from one unit of product *i*
- S_{it} ... amount of product i sold in period t
- a_{ij} ...time required on workstation j to produce one unit of product i
- c_{jt} ...capacity of workstation j in period t in units (consistent with a_{ij})

Backorders

$$\max \sum_{t=1}^{t} \sum_{i=1}^{m} \mathbf{r}_{i} S_{it} - h_{i} I_{it}^{+} - \pi_{i} I_{t}^{-}$$

subject to
$$d_{it} \leq S_{it} \leq \overline{d}_{it} \qquad \text{for all } i, t$$

$$\sum_{i=1}^{m} a_{ij} X_{it} \leq c_{jt} \qquad \text{for all } j, t$$

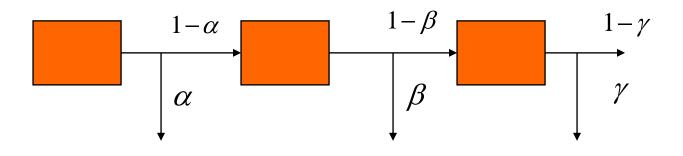
$$I_{it} = I_{it-1} + X_{it} - S_{it} \qquad \text{for all } i, t$$

$$I_{it} = I_{it}^{+} - I_{it}^{-} \qquad \text{for all } i, t$$

$$X_{it}, S_{it}, I_{it}^{+}, I_{it}^{-} \geq 0 \qquad \text{for all } i, t$$

Production Management

Overtime


 $l'_{j} = \text{cost of one hour of overtime at workstation j}$ O_{it} = overtime at workstation j in period t in hours

$$\max \sum_{t=1}^{\bar{t}} \left\{ \sum_{i=1}^{m} (r_i S_{it} - h_i I_{it}^+ - \pi_i I_{it}^-) - \sum_{j=1}^{n} l' O_{jt} \right\}$$

subject to

 $\sum_{i=1}^{m} a_{ij} X_{it} \leq c_{jt} + O_{jt} \qquad \text{for all } i, t$ $X_{it}, S_{it}, I_{it}^{+}, I_{it}^{-}, O_{jt} \geq 0 \qquad \text{for all } i, t$

¥ Yield loss

 α, β, γ ...fraction of output that is lost y_{ij} ...cumulative yield from station j onward (including station j) for product i we must release $\frac{d}{y_{ij}}$ units of i into station j

Production Management

Basic model + Yield loss extension (no backorders)

 $\max\sum_{i=1}^{t}\sum_{i=1}^{m}(\mathbf{r}_{i}S_{it}-h_{i}I_{it})$ subject to $d_{it} \leq S_{it} \leq \overline{d}_{it}$ for all *i*, *t* $\sum_{i=1}^{m} \frac{a_{ij} X_{it}}{y_{ij}} \le C_{jt}$ for all *j*,*t* $I_{it} = I_{it-1} + X_{it} - S_{it}$ for all *i*, *t* $X_{it} S_{it} I_{it} \geq 0$ for all *i*, *t*

- Single product, workforce resizing, overtime allocationNotation
 - b = number of man hours required to produce one unit of product
 - l = cost of regular time in dollars/man hour
 - $l' = \cos t$ of overtime in dollars/man hour
 - e = cost to increase workforce by one man hour per period
 - e' = cost to decrease workforce by one man hour per period
 - W_t = workforce in period t in man hours of regular time
 - H_t = increase in workforce from period t 1 to t in man hours
 - F_t = decrease in workforce from period t 1 to t in man hours
 - $O_t = overtime in period t in hours$

 $a_i X_t \leq c_{it}$

- HP formulation: maximize net profit, including labor, overtime, holding, and hiring/firing costs
- subject to constraints on sales, capacity,...

$$\max \sum_{t=1}^{t} \left\{ rS_t - h I_t - lW_t - l'O_t - eH_t - e'F_t \right\}$$

subject to
$$d_t \le S_t \le \overline{d}_t \qquad \text{for all } t$$

$$I_t = I_{t-1} + X_t - S_t \qquad \text{for all } t$$

- $W_t = W_{t-1} + H_t F_t \qquad \text{for all } t$
- $bX_t \le W_t + O_t$ for all t

 $X_{t,}S_{t,}I_{t}, O_{t,}W_{t,}F_{t,}H_{t} \ge 0$ for all t

AP-WP Example

- **Revenue: 1000\$**
- worker capacity: 168h/month
- initially 15 workers
- no initial inventory
- Holding costs: 10\$/unit/month
- Regular labor costs: 35\$/hour
- i overtime: 150% of regular
- Hiring costs: 2500\$ (2500/168 ~ 15\$ per man-hour)
- Hay-off costs: 1500\$ (1500/168 ~ 9\$ per man-hour)
- no backordering
- **#** demands over 12 months:
- 200, 220, 230, 300, 400, 450, 320, 180, 170, 170, 160, 180
- # demands must be met! (S=D)

AP-WP Example(cont.)

Betermine over a 12 month horizon:

- △ Number of workers: W
- 🗠 Output: X
- Overtime use: O
- ☐ Inventory: I

(H, F are additional choice variables in the model)

Parameters:													
Г	1000												
h	10												
1	35												
ľ	52,5												
е	15												
e'	9												
b	12												
1 <u>0</u>	0												
W_0	2520												
t	1	2		4	5			8		10	11	12	total
	200	220	230	300	400	450	320	180	170	170	160	180	2980
Desicion Variables:													
t	1	2	3	4	5	6	7	8	9	10	11	12	
Xt													
Wt													
Ht													
Ft													
lt													
Ot													
Objective:													
Profit	2980000	\$											

Constraints:				
11-10-X1	0,00	=	-200	d_1
I2-I1-X2	0,00	=	-220	d_2
13-12-X3	0,00	=	-230	d_3
14-13-X4	0,00	=	-300	d_4
I5-I4-X5	0,00	=	-400	d_5
16-15-X6	0,00	=	-450	d_6
17-16-X7	0,00	=	-320	d_7
18-17-X8	0,00	=	-180	d_8
I9-I8-X9	0,00	=	-170	d_9
110-19-X10	0,00	=	-170	d_10
I11-I10-X11	0,00	=	-160	d_11
I12-I11-X12	0,00	=	-180	d_12
W1-W0-H1+F1	-2520,00	=	0	
W2-W1-H2+F2	0,00	=	0	
W3-W2-H3+F3	0,00	=	0	
W4-W3-H4+F4	0,00	=	0	
W5-W4-H5+F5	0,00	=	0	
W6-W5-H6+F6	0,00	=	0	
W7-W6-H7+F7	0,00	=	0	
W8-W7-H8+F8	0,00	=	0	
W9-W8-H9+F9	0,00	=	0	
W10-W9-H10+F10	0,00	=	0	
W11-W10-H11+F11	0,00	=	0	
W12-W11-H12+F12	0,00	=	0	

bX1-W1-01	0,00	<=	0	
bX2-W2-02	0,00	<=	0	
bX3-W3-O3	0,00	<=	0	
bX4-W4-O4	0,00	<=	0	
bX5-W5-05	0,00	<=	0	
bX6-W6-O6	0,00	<=	0	
bX7-W7-07	0,00	<=	0	
bX8-W8-O8	0,00	<=	0	
bX9-W9-O9	0,00	<=	0	
bX10-W10-O10	0,00	<=	0	
bX11-W11-O11	0,00	<=	0	
BX12-W12-012	0,00	<=	0	

Parameters:													
r	1000												
h	10												
1	35												
ľ	52,5												
е	15												
e'	9												
b	12												
I_0	0												
W_0	2520												
t	1	2	3	4	5	6	7	8	9	10	11	12	total
	200	220	230	300	400	450	320	180	170	170	160	180	2980
Desicion Variables:													
t	1	2	3	4	5	6	7	8	9	10	11	12	
Xt	302,86	302,86	302,86	302,86	302,86	302,86	302,86	180,00	170,00	170,00	170,00	170,00	2980,00
Wt	3634,29	3634,29	3634,29	3634,29	3634,29	3634,29	3634,29	2160,00	2040,00	2040,00	2040,00	2040,00	35760,00
Ht	1114,29	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1114,29
Ft	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1474,29	120,00	0,00	0,00	0,00	1594,29
lt	102,86	185,71	258,57	261,43	164,29	17,14	0,00	0,00	0,00	0,00	10,00	0,00	1000,00
Ot	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Objective:													
Profit	1687337	\$											

Aggregate Planning-Summary

The following scenarios have been discussed:

- Single product, single resource, single process find: workforce, output, inventory (w. or w/o backorders)
- # multiple products, single resource, single process find: workforce, all outputs, all inventories (w. or w/o backorders)

multiple products, multiple resources, multiple processes (workforce given)

find: all outputs, all inventories, use of processes

Aggregate Planning-Summary

The following scenarios have been discussed:

multiple products, multiple workstations(workstation capcities given)

find: all sales, all outputs, all inventories (w. or w/o backorders)

multiple products, multiple workstations

find: all sales, all outputs, all inventories (w. or w/o backorders), OT

single product, multiple workstations, one resource

find: workforce, all sales, all outputs, all inventories (w. or w/o backorders), OT

Work to do:

Examples: 5.7, 5.8abcdef, 5.9abcd, 5.10abcd, 5.16abcd, 5.21, 5.22, 5.29, 5.30

Replace capacity columns of table in problem 5.29 with Month Machine Worker

1	1350	19000
2	1270	19000
3	1350	19500

Hinicase BF SWING II