MIP for the Lot-sizing in MRP

Indices:

ces:	
Р	Number of products in BOM
Т	Planning horizon
M	Number of resources
i	Label of each item in BOM assumed that all labels are sorted with
	respect to their low level code
t	Specified Period t in T
т	Specified Resource m in M

Parameters

$\Gamma(i)$	Set of immediate successors of item <i>i</i>
$\Gamma^{-1}(i)$	Set of immediate predecessors of item <i>i</i>
Si	Setup cost for item <i>i</i> (assumed to be constant over time horizon)
C_{ij}	Quantity of item <i>i</i> required to produce one unit of item <i>j</i> .
h_i	Holding cost for item <i>i</i> (assumed to be constant over time horizon)
a_{mi}	Capacity needed on resource <i>m</i> for one unit of item <i>i</i>
b_{mi}	Setup time for item <i>i</i> on resource <i>m</i>
L_{mt}	Available capacity of resource <i>m</i> in period <i>t</i>
OC_m	Overtime cost of resource <i>m</i>
G	Big number in this case assume $G=500000$
$D_{it} =$	External demand for product i in period t if i is finished items
	$ \begin{bmatrix} 0 & \text{otherwise} \end{bmatrix} $

Variables

x_{it}	Delivered quantity of item <i>i</i> at the beginning of period <i>t</i> .
I_{it}	Inventory level of item <i>i</i> at the end of period <i>t</i> .
O_{mt}	Overtime hours required for machine <i>m</i> in period <i>t</i>
	$\int 1$ when item <i>i</i> is produced in period <i>t</i>
$y_{it} =$	0 otherwise

For simplicity, we assume that the demand $d_{i,t}$ for all end-products is given. The problem can then be formulated as a mixed integer program:

$$\min \sum_{i=1}^{P} \sum_{t=1}^{T} (s_i y_{it} + h_i I_{it}) + \sum_{t=1}^{T} \sum_{m=1}^{M} oc_m O_{mt}$$
(1)

subject to the set of constraints

$$I_{i,t} = I_{i,t-1} + x_{i,t} - \sum_{j \in \Gamma(i)} c_{ij} x_{jt} - D_{it} \qquad \forall i,t$$
(2)

$$\sum_{i=1}^{P} (a_{mi}x_{it} + b_{mi}y_{it}) \le L_{mt} + O_{mt}$$
 $\forall m, t$ (3)

$$x_{it} - Gy_{it} \le 0 \qquad \qquad \forall i, t \tag{4}$$

$$I_{it} \ge 0, \ x_{it} \ge 0, y_{it} \in \{0, 1\} \qquad \forall i, t$$
(5)