## Examples Chapter 7

- 7.7. Given the forecasts, customer orders, and on-hand inventory shown for a product in an ATO environment, derive the MPS for
  - (a) Lot-for-lot production
  - (b) Batch production where batch size = 8000

|                          | Week |      |      |      |      |      |  |
|--------------------------|------|------|------|------|------|------|--|
| Current inventory = 7500 | 1    | 2    | 3    | 4    | 5    | 6    |  |
| $F_t$                    | 6000 | 6000 | 5600 | 5000 | 6000 | 5000 |  |
| $O_t$                    | 4600 | 4000 | 3500 | 500  | 0    | 0    |  |

- 7.8. Add the ATP values to the MPS plan in Problem 7.7.
- 7.10. Using the costs, requirements, and times as shown below for two products for a planning horizon of three weeks, with 1200 hours per week, formulate the MPS problem mathematically. This is an MTS environment.

|          | De         | Demand (units) |            | Current   |              | Cost (\$)    |              |
|----------|------------|----------------|------------|-----------|--------------|--------------|--------------|
| Week     |            | Hours/unit     | Set-up     | Holding   |              |              |              |
| P1<br>P2 | 200<br>560 | 250<br>590     | 150<br>700 | 100<br>50 | 2.50<br>1.20 | 3.75<br>5.50 | 0.65<br>0.32 |

7.11. Given the following data for an ATO environment, formulate the MPS problem mathematically. There are three modules that are assembled to produce two products. There are currently six orders to be filled over the next three time periods. There are 112 hours of production time available in each period.

|            | Custome   | er orders   |                  |
|------------|-----------|-------------|------------------|
| Order<br>j | Product i | Quantity Qi | Week<br>due<br>t |
| 1          | 1         | 15          | 1                |
| 2          | 2         | 30          | 1                |
| 3          | 1         | 20          | 2                |
| 4          | 2         | 30          | 2                |
| 5          | 1         | 10          | 3                |
| 6          | 2         | 20          | 3                |

|   | q | ki |   |
|---|---|----|---|
|   | k |    |   |
| i | 1 | 2  | 3 |
| 1 | 3 | 2  | 1 |
| 2 | 1 | 1  | 1 |

 $q_{ki}$  = number of modules of type k required to assemble product i

|   |    |    |    | $g_{kj}$ |    |    |       |
|---|----|----|----|----------|----|----|-------|
|   |    |    |    | j        |    |    |       |
| k | 3  | 2  | 3  | 4        | 5  | 6  | Total |
| 1 | 45 | 30 | 60 | 30       | 30 | 20 | 215   |
| 2 | 30 | 30 | 40 | 30       | 20 | 20 | 170   |
| 3 | 15 | 60 | 20 | 60       | 10 | 40 | 205   |

 $g_{kj} = \text{number of modules of type } k \text{ required for order } j$ 

7.14. Pell Sons Boats manufactures three types of sailboats. Their final assembly operation consists of three workcenters: paint, mast fitting, and roping. Given the MPS and the bill of capacity for PSB, Inc., shown in the accompanying tables, create a capacity profile. If necessary, suggest an alternative MPS that would be feasible.

| MPS (units) |    |            |    |    |    |    |    |    |  |
|-------------|----|------------|----|----|----|----|----|----|--|
| Week        | 1  | 2          | 3  | 4  | 5  | 6  | 7  | 8  |  |
| Boat 1      | 94 | 93         | 42 | 33 | 73 | 87 | 71 | 98 |  |
| Boat 2      | 65 | 20         | 48 | 57 | 77 | 37 | 74 | 40 |  |
| Boat 3      | 71 | <b>5</b> 3 | 56 | 22 | 91 | 79 | 93 | 66 |  |

| Bill of capacity (minutes) |       |              |      |  |  |  |  |
|----------------------------|-------|--------------|------|--|--|--|--|
|                            | Paint | Mast         | Rope |  |  |  |  |
| Boat 1                     | 43    | 22           | 17   |  |  |  |  |
| Boat 2                     | 57    | 30           | 23   |  |  |  |  |
| Boat 3                     | 90    | 50           | 41   |  |  |  |  |
| Jugar II                   | 2.25  | 450          | 48   |  |  |  |  |
| 100 G G 1 G                |       | and the same |      |  |  |  |  |

7.15. The following data represent the planned releases to an assembly workcenter that has a capacity of 475 hr per week. Use Karni's (1982) I/O-analysis method to analyze the lead times, assuming  $U_o = 0$ .

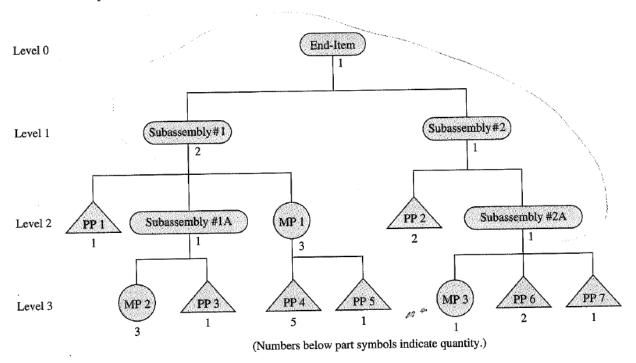
|       |     | Week (t) |     |     |     |     |  |  |  |
|-------|-----|----------|-----|-----|-----|-----|--|--|--|
|       | 1   | 2        | 3   | 4   | 5   | 6   |  |  |  |
| $R_t$ | 379 | 508      | 248 | 295 | 351 | 227 |  |  |  |

7.16. Using the data in Problem 7.15, determine the additional capacity that would be required to achieve a lead time of 0.5 weeks for this volume of work.

7.17. Rock Huggers, Inc., manufactures four types of contour sport sandals: the Chewy, the Tally, the Ammy, and the Grandy. Blick Carry, production planner for RHI received the following forecasts from the sales department:

Forecasts, in pairs  $\times$  1000

|        | September |    |    |    | October |    |    |    |
|--------|-----------|----|----|----|---------|----|----|----|
|        | 1         | 2  | 3  | 4  | 5       | 6  | 7  | 8  |
| Chewy  | 98        | 94 | 93 | 87 | 73      | 71 | 42 | 33 |
| Tally  | 74        | 71 | 57 | 33 | 28      | 18 | 12 | 9  |
| Ammy   | 50        | 48 | 21 | 13 | 11      | 9  | 4  | 2  |
| Grandy | 24        | 24 | 21 | 18 | 17      | 16 | 16 | 8  |


Blick also received the following quantities representing customer orders for those weeks:

Customer orders, in pairs  $\times$  1000

|        |    | September  |    |    |    | October |    |    |  |
|--------|----|------------|----|----|----|---------|----|----|--|
|        | 1  | 2          | 3  | 4  | 5  | 6       | 7  | 8  |  |
| Chewy  | 93 | 93         | 78 | 71 | 61 | 27      | 11 | 3  |  |
| Tally  | 63 | <b>6</b> 1 | 59 | 37 | 24 | 15      | 11 | 10 |  |
| Ammy   | 44 | 34         | 19 | 18 | 17 | 14      | 8  | 7  |  |
| Grandy | 30 | 29         | 24 | 14 | 7  | 5       | 4  | 1  |  |

Inventory quantities for the Chewy, the Tally, the Ammy, and the Grandy are 129,000, 108,000, 79,000, and 43,000, respectively. The production departments like Blick to schedule in batch sizes that are multiples of 100,000. What would Blick's MPS quantities look like for the four types of sandals?

**7.31.** For the generic product structure and the MPS shown below, perform the explosion part of the MRP process.



| Level | Item     | Weekly quantity |     |     |     |     |     |  |  |  |
|-------|----------|-----------------|-----|-----|-----|-----|-----|--|--|--|
|       |          | 1 2 3 4 5 6     |     |     |     |     |     |  |  |  |
| 0     | End-item | 150             | 200 | 240 | 190 | 140 | 100 |  |  |  |

7.32. Given the scheduled receipts shown below for the subassembly #1 in the generic product structure of Problem 7.31, perform the netting procedure if the on-hand inventory at time 0 is 75.

| Scheduled receipts per week |     |     |    |   |   |  |  |  |  |
|-----------------------------|-----|-----|----|---|---|--|--|--|--|
| 1                           | 2   | 3   | 4  | 5 | 6 |  |  |  |  |
| 500                         | 300 | 100 | 50 | 0 | 0 |  |  |  |  |

- **7.33.** Perform the offsetting procedure for the net requirements in Problem 7.32 assuming a lead time of three weeks and a lot size of 500 units.
- 7.34. Complete the MRP record shown in the following table for subassembly #2 in the product structure of Problem 7.31. Use the following assumptions:
  - Lead time for subassembly #2 = two weeks.
  - Lead time for all other parts = 1 week.
  - Lot size for subassembly #2 = 300 units.
  - Lot-for-lot method is used to determine lot sizes for all other parts.